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Abstract

Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which
are sudden changes to a qualitatively different system state. These changes can profoundly impact the
functioning of a system ranging from controlled state switching to a catastrophic break-down; signals
that predict critical transitions are therefore highly desirable. To this end, research efforts have focused
on utilizing qualitative changes in markers related to a system′s tendency to recover more slowly from a
perturbation the closer it gets to the transition, a phenomenon called critical slowing down. The recently
studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify
the transition mechanism and improve transition prediction using scaling laws.

Here, we outline and apply this strategy for the first time in a real-world system by studying the
transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified
two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf
bifurcation. Although theory provides precise predictions on signatures of critical slowing down near
the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-
clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1) the transition
to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2) the scaling laws
suggest a saddle-node bifurcation governing slowing down, and 3) these precise scaling laws can be used
to predict the bifurcation point from a limited window of observation. To our knowledge this is the first
report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad
class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling
laws of critical slowing down as a strategy applicable to other complex systems.

Author Summary

Neurons efficiently convey information by being able to switch rapidly between two different states:
quiescence and spiking. Such sudden shifts to a qualitatively different state are observed in many complex
systems; the often dramatic consequences of these tipping points for diverse fields such as economics,
ecology, and the brain have spurred interest to better understand their transition mechanisms and predict
their sudden occurrences. By studying the transition from neuronal quiescence to spiking, we show
that the quantitative scaling laws for critical slowing down, i.e., a system’s tendency to recover more
slowly from perturbations upon approaching its transition point, inform about the underlying bifurcation
mechanism and can be used to improve the prediction of a system’s tipping point.

Introduction

Rapid transitions to a qualitatively different state can be observed in many complex systems. Their
sometimes catastrophic outcomes in systems from diverse fields such as climate, ecology, medicine and
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economics have led to an increased interest in the underlying structure and dynamics of these transitions
[1, 2]. While the consequences of such shifts are often undesired, the proximity to a transition can also
have various beneficial aspects such as to allow for rapid switching between different states and for small
changes to have a large effect on the system state. In the brain, for example, this double-edged role is
illustrated by the unwanted transition from normal to epileptic brain activity on one side [3, 4], and, on
the other side, the role state transitions play in changing between mutually exclusive motor programs [5]
or the generation of action potentials to efficiently convey information.

Better insight into these transitions has come from a dynamical systems’ perspective. For individual
neurons, this approach identified two robust mechanisms for the transition from subthreshold near-steady
activity to repetitive spiking, saddle-node and Hopf bifurcation [6–9]. The type of threshold behavior
predicted by these bifurcations has been able to account for various observations in biological neurons.
For example, the smooth frequency vs. current (f-I) curve observed in pyramidal neurons stimulated
with steady current is predicted by a saddle-node on invariant cycle bifurcation [8, 10]. Conversely, a
discontinuous f-I curve characterized by an abrupt onset of firing as current injection is ramped up has
been discussed in the context of an underlying (subcritical) Hopf bifurcation [7, 10, 11]. Although the
above mapping between bifurcation and continuity of the f-I curve is not perfect [7] and the experimental
determination of the underlying bifurcation to spiking can be problematic [12–14], these differences in
f-I curves have led to a classification of neurons according to type 1 and type 2 behavior referring to
continuous and discontinuous f-I curves, respectively. However, other crucial predictions following from
theory of bifurcations have not been demonstrated experimentally. In particular, theory implies that
system dynamics should recover more slowly from small perturbations upon approaching the bifurcation
or tipping point, a phenomenon called critical slowing down [15]. Critical slowing down can be monitored
by measuring the recovery rate of system variables after small perturbations but also manifests itself by
an increase in its fluctuations, i.e. variance due to the longer relaxation times near the bifurcation, as
well as higher autocorrelation values [16, 17]. Although theory provides precise quantitative predictions
on signatures of critical slowing down for different bifurcations, direct experimental evidence in neurons
approaching their spiking threshold has been lacking. The confirmation of critical slowing down and its
characteristic scaling in biological neurons therefore represents a missing link between experiment and
theory [18] relevant for a large class of neuroscience modeling.

Critical slowing down has furthermore attracted considerable attention in a wide range of systems
outside of neuroscience. In many real-world settings, warning signals of impending critical transitions are
highly desirable because it is often difficult to revert a system to the previous state once a critical transition
has occurred [1, 19]. While qualitative changes in markers related to slowing down have previously been
used to probe the proximity to a tipping point in various systems [20–24], a quantification of their
scaling laws, to our knowledge, has never been attempted in an experimental setting. Consequently, the
affirmation of scaling laws of critical slowing down in a real-world system could offer refined approaches
to the prediction of tipping points by incorporating knowledge about these scaling relations.

In the present work, we quantitatively study the scaling laws of critical slowing down for the transition
from quiescence to spiking in cortical neurons recorded in the acute brain slice. We show that this
transition equates a critical transition exhibiting slowing down where changes in variance and recovery
rate are necessary consequences when the bifurcation point is approached. Using bifurcation theory we
derive the precise scaling laws relevant in the context of neuronal spiking and compare them to the scaling
of variance and recovery rate observed in biological neurons. Our analysis suggests the scaling of these
markers of critical slowing down to be governed by a saddle-node bifurcation in both type 1 and type 2
neurons. Furthermore, incorporation of these scaling laws improves bifurcation point prediction from a
limited window of observation. To our knowledge this work represents the first quantitative analysis of
scaling laws governing critical slowing down in a real-world experimental system.
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Results

Critical slowing down near the transition to spiking in biological neurons

Using the whole-cell patch configuration and acute slices prepared from 2-4 week old rats, we recorded
intracellularly the membrane potential of cortical pyramidal neurons and fast-spiking interneurons in
response to current injections. We developed a stimulation protocol that allowed us to monitor markers
of critical slowing down [1, 2, 16] while systematically increasing the injected current to drive the neu-
ron towards its spiking threshold, i.e. tipping point (Fig. 1 a, b). Specifically, while GABAergic and
glutamatergic synaptic transmission was blocked by bath application of PTX (50µM) and AP5/DNQX
(50µM/10µM), respectively, we applied a slowly depolarizing step current to gradually drive the mem-
brane potential towards the spiking threshold. In addition to the step current, we applied brief, sub-
threshold current pulses at regular intervals as small perturbations (see Methods). When the neuron
started to spike the current injection was stopped. We quantified the neuron’s recovery to each pertur-
bation by fitting an exponential decay to the return of the membrane potential trajectory within a few
hundred milliseconds to derive a recovery rate λ (Fig. 1 b). The unperturbed one–second segments be-
fore the current pulses were used to calculate variance and autocorrelation from subthreshold voltage (see
Methods). Starting at the resting membrane potential, recovery rates exhibited a gradual decline which
became more pronounced towards the spiking threshold. Concomitantly, autocorrelation and variance
showed a marked increase towards the membrane potential value at which spiking started (Fig. 1 c). The
decrease in recovery rate together with the increase in variance and autocorrelation amount to conclusive
evidence for critical slowing down in subthreshold neuronal activity prior to spiking.

The existence of critical slowing down is a direct consequence of a bifurcation underlying the transition
from quiescence to spiking in neurons [6, 7, 25, 26]. Although there have been experimental reports of
changes in subthreshold activity dependent on the level of depolarization in cortical neurons, such as the
width and decay of exitatory postsynaptic potentials (EPSPs) [12,27,28] or the amount of subthreshold
voltage noise [29], these observations have not been put into context with critical slowing down at a
bifurcation. Even more so, there has been no quantification of these phenomena, which is of particular
relevance since bifurcation theory makes precise predictions for the scaling of these markers of critical
slowing down. In the following, we will outline in more detail, why it is reasonable to look for critical
slowing down in the statistics of subthreshold membrane potential fluctuations near a neuron’s transition
from quiescence to spiking. Specifically, we will first present the quantitative scaling laws predicted by
theory and second relate them to the scaling observed in experimental measurements from biological
neurons.

Statistical scaling laws of critical slowing down predicted by bifurcation theory

Quiescence or spiking can be regarded as two different states a neuron can be in. The mathematical
study of such transitions is called bifurcation theory. From a dynamical systems’ point of view, a neuron’s
transition from quiescence to spiking therefore corresponds to a bifurcation in neuron dynamics. It is
because of this proximity to a bifurcation that neurons are excitable, i.e., have the ability to exhibit
a qualitative change in their dynamics. Neurons can be driven from quiescence toward their spiking
threshold by slowly increasing current injections. The observation of a very drastic end of quiescence (or
steady-state) upon increase of the injected current beyond a certain threshold suggests that the most likely
dynamical transitions are either a saddle-node or a Hopf bifurcation. A saddle-node bifurcation (i.e. a
saddle-node bifurcation or a saddle-node bifurcation on an invariant circle bifurcation) is characterized by
a single eigenvalue of the linearized subsystem passing through the imaginary axis. A Hopf bifurcation (i.e.
a subcritical Andronov-Hopf bifurcation) has a complex conjugate pair of eigenvalues passing through
the imaginary axis [7, 30–32]. These insights yield the important conclusion that, no matter how one
decides to model neurons, one has to analyze the statistics near saddle-node and Hopf bifurcations to
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obtain the scaling laws near the transition to spiking. Besides being near a local bifurcation, moderate
noise levels in the system are a necessary condition to observe critical slowing down, as dynamics could
instantly jump to a different attractor when noise levels are too high.

Here, we first review the scaling laws governing subthreshold dynamics for both saddle-node and
Hopf bifurcation. These scaling laws for recovery rate and variance are known analytically [33]. We will
derive the scaling for recovery rate for saddle-node and Hopf bifurcation relevant for the transition to
neuronal spiking from their bifurcation normal forms and numerically illustrate the scaling relations for
both bifurcations in a model system that captures our experimental approach.

Normal forms

Normal forms are model systems associated with a bifurcation exemplifying the bifurcation type. A
normal form of a saddle-node bifurcation is

dV

dt
= y + V 2. (1)

There are two equilibria V = ±
√
−y for y < 0 and the saddle-node bifurcation occurs for yc = 0. The

equilibrium V − := −
√
−y is stable since the linearized system around V − is

dX

dt
= (DV f)(V −)X = −2V −X = −2

√
−yX. (2)

Here, y is the parameter which controls the distance to the bifurcation. In our patch experiment,
this was the difference between the current at which spiking occurred and the current injected. If one
assumes y quasi-stationary, we may solve (2) and obtain

X(t) = X(0)e−2
√
−yt. (3)

Equation (3) implies that when dynamics is perturbed slightly away from the stable equilibrium V −

for y < 0 the trajectory will return to V − exponentially fast and the exponent scales like O(
√
−y) in

terms of the y-variable as y ↗ 0. Consequently, the closer one gets to the bifurcation point yc = 0, the
longer it takes to recover from a perturbation which is the well-known phenomenon of critical slowing
down or intermittency [1, 15, 34]. The factor −2

√
−y is also refered to as the recovery rate λ [33] or as

the first Lyapunov exponent [35].
For the Hopf bifurcation the scaling law for recovery rate can be derived in a similarly straightforward

fashion. The normal form of the (subcritical) Hopf bifurcation is given by

dV1
dt

= yV1 − V2 + V1(V 2
1 + V 2

2 ), (4)

dV2
dt

= V1 + yV2 + V2(V 2
1 + V 2

2 ). (5)

The equilibrium V1 = 0 = V2 is stable for y < 0 and the Hopf bifurcation occurs at yc = 0. Linearizing
around the equilibrium yields

dX1

dt
= yX1 −X2, (6)

dX2

dt
= X1 + yX2, (7)

so that the recovery rate scales with O(y) as y ↗ 0 for the Hopf bifurcation.
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The same scaling laws for recovery rate also hold when moderate noise levels are included as is often
the case in biological systems. Furthermore, the inclusion of noise terms in the normal forms allows the
derivation of scaling laws for variance as a function of the distance to the bifurcation. These scaling laws
for recovery rate λ and variance v under noise conditions have been analytically derived elsewhere and
can be summarized, under suitable technical assumptions [36,37], by

λ ∼ (−y)0.5,
v ∼ (−y)−0.5

(8)

for saddle-node, and

λ ∼ (−y)1.0,
v ∼ (−y)−1.0

(9)

for Hopf bifurcation as y ↗ 0 = yc, where yc is the bifurcation point.

Scaling at saddle-node bifurcation and Hopf bifurcation in a model system

As an illustration of the scaling laws governing critical slowing down we modeled the dynamics near
saddle-node and Hopf bifurcation in a way that directly relates to our experimental work. Specifically,
we were interested in the scaling of variance and recovery rate near these bifurcations. Since we are
mainly interested in the scaling of critical slowing down near the transition to continuous spiking, whose
dynamics can be shown to be determined by the local bifurcation in question [7,38], we study the scaling
using normal forms of saddle-node and Hopf bifurcation, respectively. Furthermore, the focus on normal
forms allows our results to be applied to other systems besides neuron models. For the study of these
scaling laws in specific neuron models we refer the reader to [18].

We modeled the saddle-node bifurcation by

dV = (−y + ρV 2) dt+ σ1 dW1 + σ2,
dy = −ε dt.

(10)

Note that (10) takes the form of a non-noisy saddle-node normal form for σ1 = σ2 = ε = 0. V
can be interpreted as the membrane potential. The second term corresponds to additive white noise of
size σ1 > 0 while the third term σ2 = σ2(t) desribes small impulsive perturbations onto the dynamics
triggered at fixed deterministic time points ti = 60. The second equation describes the slowly changing
control parameter y governed by time scale ε which drives the system towards the bifurcation point. In
the experimental setting, y = Ic − I corresponds to the distance to the critical current at which spiking
starts, ε is related to the rate by which current is injected into the cell, σ1 describes the Gaussian noise
level in the system and σ2 the size of small external perturbations in the form of brief injected current
pulses (see experimental stimulation protocol for details). In the following we set ε = 0.001, ρ = 0.1,
σ1 = 0.001 and σ2 = 0.1. Figure 2 a shows the trajectory of a single stochastic sample path starting from
the initial conditions y0 = 1.6 and V0 = −4. Here, the bifurcation occurs at (Vc, yc) = (0, 0) (red dot)
which corresponds to time tc = (y0 − yc)/ε = 1600 (red vertical lines in Figure 2 b, c).

In terms of a neuron’s underlying electrophysiology, the scaling of critical slowing down can be under-
stood by considering the nonmonotonic I-V curve observed at a saddle-node on a limit cycle bifurcation
(SNIC) [8, 12, 14, 39]. Such a nonmonotonic curve implies a local maximum above which depolarization
activates a net inward current. Until this maximum is reached inputs are integrated. These integration
properties are similar to RC circuits. Near the maximum or tangent point, the shape of the steady state
I-V curve is approximated as a parabola in the normal form framework (Figure 2 a). As Ic − I = y
is further decreased, there are two branches, a stable (left) and an unstable one (right). The slope of
the I-V curve (or normal form parabola) can, in biological terms, be interpreted as the instantaneous
conductance g. When linearized about the stable branch, as shown above for normal forms, it follows
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that g ∼
√
Ic − I. In integrators such as a RC circuits, the recovery time constant scales with C/g.

Consequently, the recovery rate, being the inverse of the time constant, will scale like λ ∼
√
Ic − I.

To visualize this scaling, we detrended V (t) by subtraction of the stable branch and analyzed the time
series Vd(t) (Figure 2 b) for markers of critical slowing down as dynamics approached the saddle-node
bifurcation. Analogously to the experimental protocol, we fit an exponential decay

Vd(t) = a · e−λt + b (11)

for the 5000 sample points following each perturbation of size σ2 to obtain the recovery rate λ and
calculated variance and autocorrelation (at lag 100) for the 5000 sampling points of the unperturbed
membrance potential preceding each perturbation. While the recovery rate decreases, the variance of
the unperturbed signal will increase due to the longer relaxation times near the bifurcation. Figure 2 c
illustrates the scaling for recovery rate and variance with exponents ±0.5 as expected for a saddle-node
bifurcation as well as the increase in autocorrelation values.

To illustrate the scaling at a Hopf bifurcation we modeled it by

dV1 = yV1 − V2 + V1(V 2
1 + V 2

2 ) dt+ σ1 dW1 + σ1 dW2 + σ3,
dV2 = V1 + yV2 + V2(V 2

1 + V 2
2 ) dt+ σ2 dW1 + σ2 dW2 + σ3,

dy = −ε dt.
(12)

As for the saddle-node bifurcation, (12) takes the form of a non-noisy Hopf normal form for σ1 = σ2 =
σ3 = ε = 0 (eq. (4)). Both V1 and V2 exhibit the same scaling behavior, so either one can be interpreted
as the membrane potential. Again, white noise of size σ1 and σ2 is added and σ3 desribes the small
impulsive perturbations. We set ε = 0.02, σ1 = σ2 = 0.01 and σ3 = 0.05. Figure 3 a shows the trajectory
of a single stochastic sample path starting from the initial conditions (V1(0), V2(0), y0) = (0, 0,−2). The
bifurcation occuring at (V1c, V2c, yc) = (0, 0, 0) (red dot) corresponds to time tc = 2000 (red vertical lines
in Figure 3 b, c). It has been noted that the membrane near the bifurcation behaves as an underdamped
RLC circuit [40]. We derived the recovery rate by fitting the 500 sampling points interval after each
perturbation of size σ3 and variance and autocorrelation from the 5000 sample point segment preceding
each perturbation. Figure 3 c illustrates the scaling for recovery rate and variance with exponents ±−1 as
expected for a Hopf bifurcation. This analysis on model systems demonstrates that, in principle, different
bifurcation types can be distinguished by the different scaling laws of critical slowing down governing
statistics near the tipping point.

Scaling laws of critical slowing down in biological neurons

We next investigated whether the predicted scaling from theory can be observed in experiment. We
thereby focused on neurons for which type 1 and type 2 behaviors have been reported.

Pyramidal neurons

Pyramidal neurons have been suggested to be governed by type 1 behavior under normal conditions
[7, 8, 10, 13]. We identified pyramidal neurons by their typical pyramidal morphology (Figure 4 a), com-
paratively long-duration action potentials and small afterhyperpolarizations (AHPs). Figure 4 a shows
typical spiking responses of a pyramidal neuron subjected to injected currents with different amplitude
levels. In our experimental protocol, we defined the critical current Ic as the average current over the
one–second interval prior to the onset of spiking. The distance to the bifurcation in our experimental
setup is consequently given by ∆I = Ic − I which corresponds to y in our model systems. We fit the
recovery rate λ for each cell and each trial (n=9 cells with a total of 22 trials) to ∆I by λ = a ·∆Iθ (see
Methods). To ensure that the derived exponents were independent of the choice of fit intervals, we fit
λ for a range of data segments with different minimal values ∆Imin. The results revealed a θ close to
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0.5 (Fig. 4 b, black markers, θ = 0.50 ± 0.05, mean value ± s.d.). The fitted exponents τ for variance
robustly centered around a value close to τ = −0.5 for sufficiently long segment lengths for which variance
was determined (Fig. 4 c, black markers, τ = −0.58 ± 0.04). The autocorrelation similarly exhibited a
power-law increase for smaller ∆I (Fig. 4 d, black markers). The corresponding exponent κ depended
on the lag for which the autocorrelation was measured.

The transition to spiking in pyramidal neurons occurs within a depolarized voltage range in which
many different mechanisms could influence the membrane potential trajectory. In addition to voltage-
gated sodium channels, transient A-type potassium channels, low-threshold voltage-gated calcium chan-
nels as well as current flow between dentrites and the soma could contribute to the observed change in
recovery rate and variance near spike threshold. However, blocking voltage-gated sodium channels in a
subgroup of cells (n=5, 13 trials) by bath application of 1µM tetrodotoxin (TTX) completely abrogated
spiking at the critical current Ic along with all signatures of critical slowing down (Fig. 4 b-d right
side, gray markers). This demonstrated that experimentally observed critical slowing down arises from
the basic mechanism that initiates the onset of spiking. Our analysis of critical slowing down in sub-
threshold statistics yielding exponents ±0.5 is therefore in good agreement with a saddle-node bifurcation
underlying the transition to spiking in pyramidal neurons.

Fast-spiking interneurons

Type 2 behavior is often assumed to be related to a Hop-bifurcation, although it has been shown that
such a direct linkage is not warranted [7]. To investigate the scaling of critical slowing down in type
2 neurons we extended our analysis to fast-spiking (FS) interneurons. Detailed previous analyses of
threshold dynamics in FS interneurons have suggested that these neurons exhibit type 2 behavior with a
discontinuous f-I curve [10]. FS interneurons were identified by a nonpyramidal morphology and round
soma (Figure 5 a), short duration of action potentials and strong after-hyperpolarization. Furthermore,
when stimulated by current injection we sometimes observed slow oscillations in the membrane potential
of FS neurons but never in pyramidal neurons. Figure 5 a (middle) shows typical spiking responses of
a FS interneuron subjected to injected currents with different amplitude levels and the discontinuity in
the f-I curve where the frequency jumps to a relatively high value at the onset of spiking (right). These
electrophysiological differences allowed to reliably distinguish them from pyramidal neurons and (Figure
5 b). In all cells investigated (n=5, 15 trials) we observed a drecrease in recovery rate and increases
in variance and autocorrelation as signatures of critical slowing down upon approaching the spiking
threshold. Scaling exponents for recovery rate (θ = 0.48± 0.10) and variance (τ = −0.51± 0.05) closely
resembled those of a saddle-node bifurcation but not a Hopf bifurcation.

Prediction of spiking threshold based on critical slowing down

We hypothesized that the knowledge of the bifurcation that underlies a critical transition could offer
a refined approach to predict the bifurcation point from a limited window of observation by using the
precise scaling laws governing slowing down. This approach is motivated by many real-world systems
exhibiting rare but often catastrophic transitions to a different state. Any insights to better anticipate
and predict those transitions would therefore be highly desirable [2]. In particular, it is likely that the
control parameter driving the system towards the tipping point, in our case the injected current, may
not be directly accessible, but that instead one might be able to monitor some other observable of the
system, such as the membrane potential in our experiment. Accordingly, we attempted to predict the
voltage V pc at which spiking occurs in pyramidal neurons using only measurements of recovery rate as a
function of the neuron’s membrane potential. Omitting the five last data points before spiking (Fig. 6 a,
blue markers), we fit λ to the membrane potential by λ = a(V pc −V )θ for the remainder of measurements
(Fig. 6 a, red markers). This fit allowed the determination of V pc as a fit parameter if θ is known (Fig.
6 a, red vertical line). We compared this predicted value to the measured critical membrane potential
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V mc defined as the average voltage over the one–second interval prior to spiking (Fig. 6 a, blue vertical
line) analogous to the definition of Ic. The differences between predicted V pc and measured V mc to the
last value taken into account for fitting (Fig. 6 a, green vertical line), i.e. ∆Vp and ∆Vm, exhibited a
significant correlation when data were fit with the saddle-node exponent θ = 0.5 (Fig. 6 b). Conversely,
there was no significant correlation when prediction was attempted with the exponent θ = 1.0 for a Hopf
bifurcation (Fig. 6 c). This demonstrates that the knowledge of the underlying bifurcation and its scaling
relations for slowing down can be used to estimate the bifurcation point from observation of data.

Discussion

We showed that the subthreshold membrane potential trajectory in cortical pyramidal neurons and fast-
spiking interneurons in the acute slice exhibits critical slowing down indicated by distinct changes in
recovery rate, variance and autocorrelation prior to the onset of spiking. To our knowledge, this work
is the first to measure and quantify these scaling laws in any experimental setup. The precise scaling
of these metrics is in agreement with predictions from bifurcation theory for a saddle-node bifurcation.
We demonstrated that incoporation of slowing down scaling laws offers a refined approach to predict the
bifurcation point, i.e., spiking threshold in our case, from a limited window of observation. Our findings
have implications for neuroscience and, in general, for the understanding of tipping points in complex
systems.

Critical slowing down governed by a saddle-node bifurcation

Numerous experimental studies have demonstrated nonlinear dynamical behavior at the transition to
spiking in excitable cells ranging from chaotic attractors and frequency doubling of cardiac pacemaker
cells [41] to intermittent bursting in cultured cortical neurons during slow driving [42]. In neurons, the
reduction of the spiking mechanism to bifurcations has greatly enhanced the understanding of neuron
functioning and is captured by many mathematical neuron models [7]. Although critical slowing down is
expected to occur upon approaching the bifurcation point, its actual existence in real neurons had not
been rigorously demonstrated. Specifically, the quantification of its scaling laws had been a missing link
to theory.

The distinction between type 1 and 2 excitability has proven useful to describe the coding properties
of neurons [43, 44] despite the fact that neuronal properties may change on slow time scales for example
due to adaptation or bursting [14], cholinergic modulation [13], or changes in the density and distribution
of ion channels [45]. A saddle-node bifurcation related to type 1 excitability has been indirectly derived
to control spiking in pyramidal neurons from their graded f-I curves [7,8,10,11], their non-monotonic I-V
curves, histograms of ISIs, and infinitesimal phase resetting curves [38,46–48]. The scaling of variance and
recovery rate experimentally observed here in pyramidal neurons is well in line with the precise scaling
laws predicted by theory for a saddle-node bifurcation.

In FS neurons, whose dynamics at threshold has been described to exhibit type 2 behavior, we also
observed scaling with exponents ±0.5. Consequently, these exponents suggest a saddle-node bifurcation
instead of a Hopf bifurcation dominating critical slowing down when the spiking threshold is approached
from resting membrane potential. Although type 2 excitability is often brought in context with an
underyling subcritical Hopf bifurcation, it has been emphasized that this mapping is certainly not clear-
cut [7]. A saddle-node (off a stable limit cycle) bifurcation, for example, can result in both type 1
or type 2 excitability and could therefore explain the scaling with exponents ±0.5 observed here. An
interesting alternative to a simple saddle-node bifurcation is a folded node which could also underlie
the transition to spiking in FS neurons since it generates exponents ±0.5 and can also account for
subhreshold oscillations [49] similar to the ones observed here and in [10]. Another possibility in line with
exponents ±0.5 would be a singular Hopf, i.e., a mix of fold and Hopf bifurcations whose subthreshold
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dynamics, however, is governed by the saddle-node [50]. Finally, we should not exclude the possibility
that our experimental analysis could provide wrong exponents and that the transition in FS neurons is
still governed by a Hopf bifurcation. The fact that the afterhyperpolarization in these neurons is deeper
than the fixed point at the previous current level has previously been discussed as one possible indication
for a Hopf bifurcation since a similar bistability can be observed in some reduced neuron models, for
example [51]. However, given the robust measurement of exponents ±0.5 here and the compatibility of
bifurcations exhibiting these exponents with other observations such as subthreshold oscillations as well
as the missing definite proof for a Hopf bifurcation in these neurons, it appears more likely that it is rather
one of the bifurcations discussed above governing critical slowing down in FS interneurons. In particular
when one considers the various factors that can modify a neuron’s bifurcation structure [13,14,45] what
type of bifurcation actually governs the transition to spiking in a neuron under investigation can only
be determined experimentally. The robust observation of scaling laws for slowing down as demonstrated
here, is therefore likely to provide informative insights into the composition of an underlying bifurcation
structure and can be a useful additional tool in studying the excitability in neurons besides other markers
such as the I-V curve, histograms of ISIs and infinitesimal phase resetting curves, for example. Apart from
neurons, the different exponents characterizing saddle-node and Hopf bifurcation open the possibility to
infer the underlying bifurcation based on subthreshold scaling laws in other systems, too.

The observation of systematic changes in recovery rate and variance as a result of critical slowing down
provides a framework to understand previous findings where these metrics were found to be changing
depending on the proximity to the spiking threshold. In particular, the width and decay of exitatory
postsynaptic potentials (EPSPs) have been observed to be dependent on the level of depolarization in
neurons [12,27,28] and have been interpreted in the context of changing inward/outward current balances
as the membrane potential approaches the spike threshold. In the framework of critical transitions, an
incoming EPSP can be understood as a small perturbation to the membrane potential analogously to
the brief current pulses in our protocol and will therefore exhibit the same changes in its recovery to
baseline. Thus, our results not only are qualitatively in line with the observed broadening of the EPSP
shapes observed when approaching the spiking threshold but also provide the distinct quantitative scaling
laws by which these changes manifest. Similarly, a positive correlation of the subthreshold voltage noise
level to holding potential in pyramidal neurons has previously been observed [29]. This observation links
directly to the increase in variance reported here. The scaling laws of variance provide a quantitative
framework to describe these previously unexplained observations in the context of critical slowing down.

Possible implications for information processing in neurons and computational
models

The decrease in recovery rate as a result of critical slowing down upon approaching the spiking threshold
is likely to have implications on information processing in neurons. It can be expected that changes in the
width of EPSPs, analogous to changes in the recovery from small current injections in our protocol, will
have an effect on the way by which inputs from other neurons are integrated. The systematic widening
of postsynaptic potentials close to spike threshold should progressively facilitate the temporal integration
of small inputs to a neuron the closer it gets to the spiking threshold. In this regard, the systematic
changes in the form of scaling laws observed in biological neurons can be useful to constrain more realistic
computational neuron models. For example, most leaky integrate-and-fire neuron models, by omitting
the dynamical modeling of action potential generation, do not take the effects of critical slowing down into
account, unless specifically incorporating changes in inward/outward current balance near threshold [52].

One can argue that it might be beneficial for a neuron to balance its excitability in a way that
its membrane potential is close to firing threshold allowing for rapid switching between quiescence and
spiking at minimal energetic cost. To maintain such a high-conductance state [53], it is conceivable that
individual neurons self-organize their excitability [54] and subthreshold statistics such as variance or the
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length and decay of a transient response such as an EPSP, for example, could consequently be utilized
to maintain a neuron close to the spiking threshold. The identical scaling of these statistics in both type
1 and type 2 neurons suggested by our analysis could therefore indicate a universal mechanism by which
this tuning towards the bifurcation occurs.

Our finding that both pyramidal neurons and fast spiking interneurons are guided by the same scaling
law close to spike onset might have important implications for the balance of fast excitation/inhibition
(E/I) in neuronal networks. A precise E/I-balance has been shown experimentally to be maintained in
vivo and in vitro as the network undergoes different levels of excitation [55, 56]. Modeling work has
demonstrated the E/I-balance to establish a decorrelated network state [57–59]. The I-F curves between
pyramidal neurons and fast-spiking interneurons display rather different firing dynamics in response to
current pulses. Our work, however, demonstrates that both neuronal population exhibit similar subthresh-
old scaling close to spike onset which suggests a symmetrical dynamical regulation of the E/I-balance,
which might simplify its maintenance.

Anticipation of tipping points in complex systems

Beyond single neurons, shifts to different dynamical regimes also occurs on a larger spatial scale in
neuronal systems. Such transitions of cortical network dynamics can be quite subtle and occur, for
example, under physiologic conditions in the course of wake and sleep [60], or are exemplified by the
rapid transitions to pathologic seizure states in epilepsy [3, 4]. It will be interesting to explore whether
these network transitions exhibit similar scaling laws to those reported here for individual cells and
whether they could consequently lead to a better understanding and perhaps even prediction of their
occurences.

From a more general perspective, our work outlines and applies a strategy of identifying a bifurcation
by the scaling relations for markers of slowing down and how to consequently incorporate this knowledge to
improve prediction of the transition point. The often irreversible changes that can occur in a large variety
of complex systems make signals that warn of these transitions highly desirable [1, 19]. Although in the
specific case of neuron firing one might think of alternative approaches to anticipate the onset of spiking
such as simple thresholding or assuming an integrate and fire model with a certain amount of noise, these
methods may likely not be applicable to other real-world systems. Recently, a particularly promising
approach to predict these kind of critical transitions in a large variety of complex systems has been based
on variables related to critical slowing down as these can often be readily monitored independently of a
system’s specificities. So far, a large body of research work has attended to qualitative changes in markers
of slowing down to anticipate tipping points [20–24]. Our work constitutes, to our knowledge, the first
experimental system in which the quantitative scaling laws governing slowing down have been reported.
We suggest that the refined prediction based on scaling laws demonstrated here could also be applicable
to other complex systems. While a direct measurement of recovery rates may not always be feasible,
indirect measures such as variance can also be used to infer the underlying transition mechanism. Once
an underlying bifurcation has been identified, in principle, the precise scaling laws can be used to predict
the tipping point as demonstrated in the current study. Although prediction performance is naturally
impeded by stochastic perturbations which can trigger critical transitions even before the bifurcation
point is reached [1,61,62], we demonstrate that given sufficient data and moderate noise levels, reasonable
quantitative predictions become possible. In this respect, our results can be regarded as a proof of concept
that an estimation of the proximity to the tipping point based on quantitative scaling of critical slowing
down is possible and provide a step forward in estimating the fragility in complex systems.
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Materials and Methods

Ethics Statement

Procedures were in accordance with National Institutes of Health guidelines. Animal procedures were
approved by the National Institute of Mental Health Animal Care and Use Committee.

Preparation of acute slices from rat cortex and whole-cell patch recording

The brains of Sprague Dawley rats (P14-P28) were removed and cut into acute coronal slices of medial
prefrontal or somatomotor cortex at 350µm thickness (VT1000S, Leica) in ice-cold artificial cerebral
spinal fluid (ACSF; 124mM NaCl, 1.2mM CaCl2, 1mM MgSO4, 3.5mM KCl, 26.2mM NaHCO3,
0.3mM NaH2PO4, and 10mM D−Glucose) bubbled with carbogen (95% O2, 5% CO2). All recordings
were performed under perfusion flow rate of 3−4ml/min while continuously monitoring and maintaining
temperature at 35± 0.5 C. The ACSF’s osmolarity was 290± 10mOsm. NMDA- and AMPA-mediated
synaptic transmission was blocked with bath-application of 50µM AP5 and 10µM DNQX, respectively,
and GABAa-mediated transmission with 50µM PTX. Patch pipettes were pulled from borosilicate glass
using a P-97 micropipette puller (Sutter Instrument, CA, USA), and had a resistance of 4− 9MΩ. The
intracellular patch solution contained 132mM K−Gluconate, 6mM KCl, 8mM NaCl, 10mM HEPES,
2mM Mg − ATP , 0.39mM Na−GTP , pH adjusted to 7.2-7.4 with KOH. Putative pyramidal or fast-
spiking neurons were visualized using an infrared CCD camera (Hamatsu) on a BX50WI (Olympus)
upright water immersion microscope. Somatic gigaseals (> 2 − 4GΩ) were made to visually identified
cells within superficial layers. After break-through, intracellular membrane potentials were recorded in
current-clamp mode (Axopatch 200B, Axon Instruments), pre-amplified and low-pass filtered at 10 kHz
(Cyberamp 380, Axon Instruments), and digitized at 25 kHz for voltage and 2.5 kHz for current traces
using a CED 1401 (Cambridge Electronic Design). We applied a step current that increased by 3 pA
every 4.01 s to slowly drive neurons towards the tipping point at which they would start spiking. On top
of this slowly increasing current we induced small perturbations to the membrane potential by injecting
current pulses of 50 pA for 5 ms at 1800 ms time and 3805 ms on each step (Fig. 1 a). The recovery after
small perturbations allowed to measure recovery rates, the unperturbed segments before current pulses
to estimate variance and autocorrelation from subthreshold voltage. Data were collected continuously
with Spike2 (CED) and analyzed off-line.

Data analysis

The recovery rate after each perturbation by 5 ms current injection of 50 pA was determined by fitting the
4800 sample (corresponding to 192 ms at 25000 Hz sampling rate) long segment of subthreshold voltage
following the pulse current injection. Prior to fitting, the mean voltage of the segment was subtracted.
The recovery of the voltage V (t) after each perturbation was fit by an exponential decay

V (t) = a · e−λt + b (13)

a, b, λ ∈ R using the Python (Python Software Foundation, version 2.6) function scipy.optimize.curve
fit. For each perturbation, the recovery rate λ was then recorded together with the mean voltage over
the 1 second interval prior the perturbation and the mean injected current I during the 1 second interval
prior the perturbation for further analysis. The distance to the bifurcation point, ∆I, is then given by
∆I = Ic− I where Ic is defined as the average current injected during the one–second interval before the
first spike. Note, that ∆I is directly related to y in our model systems.

Variance was calculated from subthreshold voltage segments prior to each current pulse. For the
results in the main part of the manuscript, segments of one–second duration were taken. Similarly,
autocorrelation was calculated from subthreshold voltage segments of one–second duration prior to each
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current pulse. After subtraction of the mean we derived the autocorrelation function ACF (s) of a signal
Fi(t) with length N , mean µ and variance v by

ACF ∗(s) =

∑N−s
t=1 (Fi(t)− µ)(Fi(t+ s)− µ)

v
, s = 1, ..., N/2 (14)

and normalization by the first value ACF (s) = ACF∗(s)
ACF∗(1) . For the analysis in the experimental part of

the manuscript, we used the value of the autocorrelation function at lag 50 ms.
We determined the power-law exponents governing the scaling for recovery rate, variance and auto-

correlation by a linear fit in log-space. Specifically, logarithmic values of recovery rates λ, variance v and
lag-50ms autocorrelation (ACF50ms) were fit individually for each trial as a function of the corresponding
logarithmic values of ∆I by

log x = A · log ∆I +B (15)

using the Python function scipy.optimize.curve fit. Here, x are the values of recovery rate,
variance and autocorrelation, respectively, and A corresponds to the related exponent (i.e. θ, τ or κ)
obtained in the fit. For the determination of exponents, we required fits to have R2 ≥ 0.1. To determine
a robust estimate of the exponent the fit values were calculated for different minimal values ∆Imin, i.e.
∆I values smaller than ∆Imin were discarded in the fit. The exponents given in the main text are the
mean values over the different ∆Imin.
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Figure 1. Critical slowing down before neuronal spiking in a pyramidal neuron. a, Current stimulation
protocol, gray areas mark segments from which variance and autocorrelation were calculated, black
areas segments used to determine recovery rates. b, Time course of the membrane potential subject to
brief perturbations by current injections on top of a slowly depolarizing step current. The inset shows a
magnification of the voltage response to a short current injection and an exponential fit to its recovery
(red line). c, Recovery rates λ after perturbations, variance and lag-50ms autocorrelation in the
subthreshold voltage, in this case for a pyramidal neuron.
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Figure 2. Illustration of stochastic scaling laws near the saddle-node (fold) bifurcation in a model
system. a, Phase space with a single stochastic sample path (black) of a saddle-node bifurcation (eq.
10) for the initial condition (V (0), y(0)) = (−4, 1.6) with σ1 = 0.001, ε = 0.001 and small perturbations
of size σ2(ti) = 0.1 with ti = 60. The bifurcation occurs at (Vc, yc) = (0, 0) (red dot). The gray curves
are the system equilibria (for ε = 0). b, Sample path Vd plotted as a time series where the equilibrium
values have been subtracted (i.e. detrending along the equilibrium branch). c, Scaling of recovery rate
λ, variance v and autocorrelation as dynamics approaches the bifurcation point (red vertical line).
Recovery rate and variance follow a power-law scaling with exponents ±0.5 illustrated by black dashed
lines.
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Figure 3. Illustration of stochastic scaling laws near the subcritical Hopf bifurcation in a model
system. a, Phase space with a single stochastic sample path (black) of a Hopf bifurcation (eq. 12) for
the initial condition (V1(0), V2(0), y0) = (0, 0,−2) with σ1,2 = 0.001, ε = 0.001 and small perturbations
of size σ3(ti) = 0.005 with ti = 60. The bifurcation occurs at (V1c, V2c, yc) = (0, 0, 0) (red dot). b,
Sample path V1 plotted as a time series used for further analysis. c, Scaling of recovery rate λ, variance
v and autocorrelation as dynamics approaches the bifurcation point (red vertical line). Recovery rate
and variance follow a power-law scaling with exponents ±1 illustrated by black dashed lines.
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Figure 4. Scaling analysis of indicators related to critical slowing down in pyramidal neurons. a,
photomicrograph of a neuron with pyramidal morphology and typical responses to depolarizing and
hyperpolarizing currents. b, Recovery rate as a function of ∆I, the distance to the bifurcation point, for
all trials combined and fitted exponents averaged over individual trials and for different minimal values
∆Imin for normal conditions (right, black markers, standard deviation) and after bath application of
tetrodotoxin (right, gray markers, standard deviation). c, Variance. d, Autocorrelation. Grey dashed
lines on the left side show power-laws with exponent 0.5 for recovery rate, -0.5 for variance and -0.27 for
autocorrelation.
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Figure 5. Scaling analysis of indicators related to critical slowing down in fast-spiking (FS) neurons.
a, Photomicrograph of a typical FS neuron with round morphology and responses to depolarizing and
hyperpolarizing currents. Right: the f-I relationship shows a discontinuity in frequency at the onset of
spiking. Different markers correspond to different neurons; for comparability the injected current has
been normalized to the onset of spiking. b, FS neurons (red markers) could be distinguished from
pyramidal neurons (blue markers) by shorter spike width and greater afterhyperpolarization (AHP)
values. c, Exponents (mean ± standard deviation) for recovery rate (θ, round markers) and variance (τ ,
diamonds) for different minimal values ∆Imin of the fit.



21

b

a

U m U p

ΔVm

Δ
V

p

ΔV
Δ

V
 [m

V
]

m ΔV p

λ 
[m

s 
 ] -1

P=0.03
R=0.47

c

ΔVm

Δ
V

p

P=0.52
R=0.15

exponent θ = 0.5

V [mV]

exponent θ = 1.0

Figure 6. Prediction of the spiking threshold using scaling relations of critical slowing down. a, The
critical voltage Vc in pyramidal neurons was determined as a fit parameter by fitting recovery rates λ
(red markers) excluding the last five measurements (blue markers) to voltage by λ = a(Vc − V )θ. ∆Vp is
the difference between the fitted critical voltage (red line) and the last value included in the fit (green
line); ∆Vm, respectively, refers to the difference between the measured voltage at the onset of spiking
(blue line) and the last value used in the fit (green line). b, Predicted ∆Vp and measured ∆Vm exhibit a
significant correlation when fitted with exponent θ = 0.5 but not when fitted with exponent θ = 1.0 (c).
P and R values refer to the linear regression analysis (solid black lines).


