MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES
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Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynah&ystem in which there is an alter-
nation between oscillations of distinct large and small atagés. MMOs have been observed and studied for over
thirty years in chemical, physical and biological systemsv Btempts have been made thus far to classify different
patterns of MMOs, in contrast to the classification of theted phenomena of bursting oscillations. This paper
gives a survey of different types of MMOs, concentratingaitslysis on MMOs whose small-amplitude oscillations
are produced by a local, multiple-time-scale “mechanism.” Ree®rk gives substantially improved insight into
the mathematical properties of these mechanisms. In this sumeeynify diverse observations about MMOs and
establish a systematic framework for studying their propsrtNumerical methods for computing different types of
invariant manifolds and their intersections are an imporaapect of the analysis described in this paper.

1. Introduction. Oscillations with clearly separated amplitudes have bémseived in
several application areas, notably in chemical reactiaradyics. Figure 1 reproduces Fig-
ure 12 in Hudson, Hart and Marinko [103]. It shows a time seoécomplex chemical
oscillations of the Belousov-Zhabotinsky (BZ) reactio®[237] in a stirred tank reactor.
The series appears to be periodic, and there is evidentisteuof the oscillations within
each period. In particular, pairs of small-amplitude datidns (SAOs) alternate with pairs
of large-amplitude oscillations (LAOs). The result is armeple of amixed-mode oscilla-
tion, or MMO, displaying cycles of (at least) two distinct ampties. There is no accepted
criterion for this distinction between amplitudes, but geparation between large and small
is clear in the case of Figure 1. The pattern of consecutigeland small oscillations in
an MMO is an aspect that draws immediate attention. Cusi@mire notationLj* L5? - - - .
is used to label series that begin with large amplitude oscillations, followed by small-
amplitude oscillationsL» large-amplitude oscillations, small-amplitude oscillations, and
so on. We will callLi* L3? - - - the MMO signature it may be periodic or aperiodic. Sig-
natures of periodic orbits are abbreviated by giving theaigre of one period. Thus, the
time series in Figure 1, which appears to be periodic, hasasige2?. As Hudson, Hart
and Marinko varied the flow rate through their reactor, MMGthwaried signatures were
observed, as well as simple oscillations with only large oy small amplitudes. Similar
results to those presented in their paper have been founthém experimental and model
chemical systems. Additionally, MMOs have been observddsar systems and in neurons.
We present an overview with references to experimentalesuaf MMOs in these and other
areas in Table 9.1 of the last section of this survey.

Dynamical systems theory studies qualitative propertisslitions of differential equa-
tions. The theory investigates bifurcations of equilitarad periodic orbits, describing how
these limit sets depend upon system parameters. Mixed-osmil&ations may be periodic or-
bits, but we then ask questions that go beyond those typierfimined by standard/classical
dynamical systems theory. Specifically, we seek to dissecMMOs into their epochs of
small- and large-amplitude oscillations, identify eachha&fse epochs with geometric objects
in the state space of the system, and determine how tramsdi@ made between these. When
the transitions between epochs are much faster than thkateaois within the epochs, we are
led to seek models for MMOs with multiple time scales.
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FiG. 1. Bromide ion electrode potential in the Belousov-Zhabéimeaction; reproduced from Hudson, Hart
and Marinko, J. Chem. Phys. 71(4): 1601-1606, 1979.

Early studies of MMOs in model systems typically limited ithiavestigations to cat-
aloging the patterns of MMO signatures found as a paramstearied. Barkley [16] is
an exception: he assessed the capability of multiple-8ose models for MMOs to pro-
duce the behavior observed by Hudson, Hart and Marinko [1B&] compared the MMOs
from these experiments and from a seven-dimensional modehé BZ reaction proposed
by Showalter, Noyes and Bar-Eli [205] with three-dimensiomultiple-time-scale models.
The MMOs that Barkley studied in some respects resembledblimc orbits to a saddle-
focus equilibrium. In particular, small-amplitude osailbns of growing amplitude were
produced by trajectories that spiraled away from the dgpiiim along its unstable manifold.
This type of homoclinic orbit was studied by L. Shilnikovi0 but Barkley noted that the
MMOs appeared to persist over open regions of system paeasirather than to occur along
a codimension-one submanifold of parameter space as isafgveith homoclinic orbits in
generic systems. Moreover, large parts of the state spatedél systems appeared to con-
verge to a tiny region at the beginning of the small-ampbtgdowing oscillations. Barkley
was unable to produce a three-dimensional model with themeacteristics, but such models
were subsequently found. This paper discusses two of thesels) emphasizing the one
proposed and studied by Koper [122]. Koper’s model is simidaa normal form for singular
Hopf bifurcation [85], a codimension-one bifurcation tlaitses in the context of systems
with two slow variables and one fast variable. Our centralifois upon MMOs whose SAOs
are a byproduct of local phenomena occurring in genericipieftime-scale systems. Analo-
gous to the role of normal forms in bifurcation theory, ursi@nding the multiple-time-scale
dynamics of MMOs in their simplest manifestations leadsngights into the properties of
MMOs in more complex systems.

The geometry of multiple-time-scale dynamical systemstsdate. Section 2 pro-
vides a short review. Beginning with the work of the “Strastyj school [48] and Tak-
ens’ work [214] on “constrained vector fields” in the 197@gometric methods have been
used to study generic multiple-time-scale systems withdlow variables and one fast vari-
able. Folded singularitiesare a prominent phenomenon in this work. As described in Sec-
tion 2, they lie on a fold of theritical manifold, where an attracting and a repelling sheet
meet. Folded singularities yield equilibria ofdesingularized reduced vector fieldat is
constructed in the singular limit of the time scale paramédtore recently, Dumortier and
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Roussarie [55], and Szmolyan and Wechselberger [212]datred singular blow-up tech-
niques for the analytical study of the dynamics near foldedidarities. These methods give
information aboutanard orbitsthat connect attracting and repellispw manifolds

Canard orbits organize the number of small-amplitude lagicihs for MMOs associated
with folded nodes. The unfoldings of folded nodes [86, 23@Hed saddle-nodes [84, 143]
and singular Hopf bifurcations [85] give insight into theacacteristics of MMOs and how
they are formed as system parameters vary. Passage otdragedhrough the region of a
folded node is one mechanism for generating MMOs that weudisat length in Section 3.1
and illustrate with examples in Sections 4 andSsngular Hopf bifurcatiorand the closely
relatedfolded saddle-node bifurcation of typettigether constitute a second mechanism that
produces SAOs and MMOs in a robust manner within systemsigadwio slow variables and
one fast variable. These bifurcations occur when a (truejlibgjum of the slow-fast system
crosses a fold curve of a critical manifold. Singular Hopubgation is discussed in Sec-
tion 3.2 and also illustrated in Sections 4 and 5. We disciss@mechanism for producing
small-amplitude oscillations in slow-fast systems thatriganized by aopf bifurcation in
the layer equationand requires two fast variables. We call this mechanisiyireamic Hopf
bifurcationand distinguish trajectories that pass by a dynamic Hopirtéftion with adelay
and trajectories with surbillion [232] whose small-amplitude oscillations have larger mag-
nitude than those of a delayed Hopf bifurcation. Dynamic Hzfurcation is discussed in
Section 3.4 and illustrated in Sections 6 and 7.

Complementary to theoretical advances in the analysisoaf-&st systems, numerical
methods have been developed to compute and visualize geostetictures that shape the
dynamics of these systems. Slow manifolds and canard adit:mow be computed in con-
crete systems; see Guckenheimer [85, 89] and Desrochasskaf and Osinga [40, 41, 42,
43]. The combination of new theory and new numerics has medlmew understanding of
MMOs in many examples that have been previously studieds paper reviews and synthe-
sizes these advances. It is organized as follows. Sectiove® packground about relevant
parts of geometric singular perturbation theory. Multipfee-scale mechanisms that produce
SAOs in MMOs are then discussed and illustrated in Sectidrh®.four subsequent sections
provide case studies that illustrate and highlight reckabtetical advances and computa-
tional techniques. More details on the computational nethsed in this paper can be found
in Section 8. The final Section 9 includes a brief survey ofMi\O literature and discusses
other mechanisms that are not associated with a split batalees and fast variables.

2. Geometric singular perturbation theory of slow-fast sygems. We consider here a
slow-fast vector field that takes the form

ed = egd2 = T, Y, A E),
- ;1[; - f(z,y ) 2.1)
Yy = ar g(l’, Y, >‘7 5)7
where(z,y) € R™ x R™ are state space variables, € RP are system parameters, and
¢ is a small parameted < ¢ < 1 representing the ratio of time scales. The functions
F R XR" xR xR — R™andg : R™ x R" x R? x R — R" are assumed to
be sufficiently smooth, typicallg'>°. The variables: are fast and the variablgsare slow.

System (2.1) can be rescaled to

, dy (2.2)

¥ = % = f(xvya)‘vg)7
Y = dt = 59<9C7?J7)\75)7

by switching from the slow time scaleto the fast time scale= 7 /¢.
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Several viewpoints have been adopted to study slow-fagemss starting with asymp-
totic analysis [56, 164] using techniques such as matchgdatstic expansions [118, 148].
Geometric Singular Perturbation Theory (GSPT) takes a géwenpoint of view and fo-
cuses upon invariant manifolds, normal forms for singtilsiand analysis of their unfold-
ings [10, 69, 110, 111, 215]. Fenichel’'s seminal work [69]Jmrariant manifolds was an ini-
tial foundation of GSPT and it is also called Fenichel thedryhird viewpoint was adopted
by a group of French mathematicians in Strasbourg. Usingtaodard analysis, they made
many important discoveries [19, 20, 22, 23, 47, 48] abouwgkst systems. This paper
adopts the GSPT viewpoint. We only focus on the results of 3BBt are necessary to study
MMOs. There are other important techniques that are partS®T; such as the Exchange
Lemma [110, 112], the blow-up method [55, 142, 233] and sfast-normal form theory [10]
that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-
qguently exhibit slow and fast epochs characterized by tleed@t which the solution ad-
vances. Az — 0, the trajectories of (2.1) converge during fast epochs ltatisms of thefast
subsystemor layer equations

xl = f('r7ya )‘70)7
{ Lo (2.3)
During slow epochs, on the other hand, trajectories of (@2yerge to solutions of
0 = f(l', y» )‘a 0))
. 2.4
{ vy = g(z,y,A0), 24)

which is a differential-algebraic equation (DAE) calle@ ghow flowor reduced systenOne
goal of GSPT is to use the fast and slow subsystems, (2.3)2a4y o understand the dy-
namics of the full system (2.1) or (2.2) fer> 0. The algebraic equation in (2.4) defines the
critical manifold

S = {(z,y) eR™ x R" | f(z,y,A,0) =0}

We remark thatS may have singularities [141], but we assume here that thés dot hap-
pen so thatS is a smooth manifold. The points ¢f are equilibrium points for the layer
equations (2.3).

Fenichel theory [69] guarantees persistencg @r a subsefl/ C S) as a slow manifold
of (2.1) or (2.2) fore > 0 small enough ifS (or M) is normally hyperbolic The notion of
normal hyperbolicity is defined for invariant manifolds raagenerally, effectively stating
that the attraction to and/or repulsion from the manifoldtienger than the dynamics on the
manifold itself; see [66, 67, 68, 95] for the exact definitiddormal hyperbolicity is often
difficult to verify when there is only a single time scale. Hawer, in our slow-fast setting,
S consists entirely of equilibria and the requirement of nalrimyperbolicity of M c S
is satisfied as soon as alle M are hyperbolic equilibria of the layer equations, thath, t
Jacobian(D,. f)(p, A, 0) has no eigenvalues with zero real part. We call a normallgHyglic
subsetM C S attracting if all eigenvalues of( D, f)(p, A,0) have negative real parts for
p € M; similarly M is calledrepellingif all eigenvalues have positive real parts. Mf is
normally hyperbolic and neither attracting nor repelling say it is ofsaddle type

Hyperbolicity of the layer equations fails at points Snwhere its projection onto the
space of slow variables is singular. Generically, suchtgaine folds in the sense of singu-
larity theory [10]. At a fold point.., we havef(p., A\,0) = 0 and(D,.f)(ps, A, 0) has rank
m — 1 with left and right null vectorsv andv, such thato - [(D2, f)(p«, A, 0) (v, v)] # 0 and
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w - [(Dy f)(p«, A, 0)] # 0. The set of fold points forms a submanifold of codimensioa i
the n-dimensional critical manifold. In particular, whenn = 1 andn = 2, the fold points
form smooth curves that separate attracting and repelliegts of the two-dimensional crit-
ical manifold S. In this paper we do not consider more degenerate singulatspof the
projection ofS onto the space of slow variables.

Away from fold points the implicit function theorem implig¢isat.S is locally the graph
of a functioni(y) = «. Then the reduced system (2.4) can be expressed as

y=g(h(y),y,A,0). (2.5)
We can also keep the DAE structure and write (2.4) as theicgstrto S of the vector field
{ x = - (Dmf)il (Dyf) 9, (26)
vy =9
onR™ x R™ by observing thaff = 0 andy = g imply & = — (sz)_1 (Dyf) g. The

vector field (2.6) blows up whelfi is singular. It can belesingularizedy scaling time by

—det (D, f), at the expense of changing the direction of the flow in théoreg/here this

determinant is positive. This desingularized system p&apsominent role in much of our
analysis. IfS is normally hyperbolic, not onhys, but also the slow flow or$' persists for

e > 0; this is made precise in the following fundamental theorem.

THEOREM 2.1 (Fenichel’'s Theorem [69])SupposeV = M, is a compact normally
hyperbolic submanifold (possibly with boundary) of theical manifold.S of (2.2) and that
f,9 € C",r < c0. Then fore > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifold. diffeomorphic ta\/,. Local invariance
means thaf\/. can have boundaries through which trajectories enter ovéea

(F2) M. has a Hausdorff distance 6i(c) from Mj.

(F3) The flow onl/. converges to the slow flow as— 0.

(F4) M. is C"-smooth.

(F5) M. is normally hyperbolic and has the same stability propertiéth respect to the
fast variables as\/, (attracting, repelling or saddle type).

(F6) M. is usually not unique. In regions that remain at a fixed dis&afrom the bound-
ary of M., all manifolds satisfying (F1)—(F5) lie at a Hausdorff disceO (e~ %/¢)
from each other for som& > 0 with K = O(1).

The normally hyperbolic manifold/, has associated local stable and unstable manifolds

Wloc MO U I/Vloc and VVIOC MO U Wloc

pEMo pEMo

whereW} (p) and W (p) are the local stable and unstable manifoldgpais a hyperbolic
equilibrium of the layer equations, respectively. Thesaifolds also persist foe > 0
sufficiently small: there exist local stable and unstablenifudds W} (A, ) and Wit (M.),
respectively, for which conclusions (F1)—(F6) hold if wpleze M. and M, by W} (1M.)
andW? (Mp) (or similarly by Wy (M) and Wy (My)).

We call M. aFenichel manifold Fenichel manifolds are a subclassstdw manifolds
invariant manifolds on which the vector field has speed thadl$ to0 on the fast time scale
ase — 0. We use the convention that objects in the singular limitehswbscripd, whereas
the associated perturbed objects have subseripts

2.1.1. The critical manifold and the slow flow in the Van der Pbequation. Let us
illustrate these general concepts of GSPT with an exampie @ the simplest systems in
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FiG. 2. Phase portraits of the Van der Pol equati¢27) for A = 0 (a) and forA = 1 (b). Shown are
the critical manifoldS (grey solid curve) and thg-nulicline (dashed line); double arrows indicate the diiea
of the fast flow and single arrows that of the slow flow. Panglsfeows a candidate for a relaxation oscillation
(black) surrounding an unstable equilibrium. Panel (b)lie imoment of the singular Hopf bifurcation with a folded
singularity at the local minimurp-.

which the concepts are manifest, and historically perh#gus the first, is the Van der Pol
equation [222, 223, 224] with constant forciAge R given by

{ ex = yf%x3+x,

s — A 2.7)

This slow-fast system has only one fast and one slow vari&bieit already exhibits com-
plicated dynamics that were truly surprising when they Wigse discovered [48]. By setting
e = 01in (2.7), we obtain the reduced system with an algebraic temughat defines the
critical manifold of (2.7) as the cubic curve

S={(z,y) eR* |y = 22° —x = c(z)}. (2.8)

It is normally hyperbolic away from the local maximum and miom p. = (41, ¢%) of
the cubic, where' has a fold with respect to the fast variableAt p.. normal hyperbolicity
fails, since%f(x,y, A\, 0) = 1 — 22 is zero atp.. Hence,p,. are the fold points and they
naturally decompose the critical manifold into three blees;

S=8""U{p-tUS U{pstuUsmT,

whereS®~ := Sn{z < -1}, S*T :=Sn{z >1}andS" = SN{-1 <z < 1}. From
the sign of%f(z, y, A\, 0) we conclude that the two branch8%~ and.S%* are attracting,
and the brancty” is repelling. The critical manifold' is shown as the grey cubic curve in
Figure 2; note tha$ and its attracting/repelling nature does not depengd,@o it is the same
both in panel (a), wherg = 0, and panel (b), wherg = 1. The dynamics of any point not on
S is entirely controlled by the direction of the fast variablewhich is indicated in Figure 2
by the horizontal double arrows; observe that the middladivafS is repelling and the two
unbounded branches are attracting.

To obtain the slow flow (2.5) o' in the Van der Pol equation (2.7) it is not actually
necessary to solve the cubic equatipr= c(z) for z on S%~, S” and S®*. It is more
convenient to write the slow (reduced) flow in terms of the fasiablex. To this end, we
differentiatef (z,y, A, 0) = y — ¢(x) = 0 with respect tor and obtain

y=d2®—i=i(z?—1).
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Combining this result with the equation fgwe get:

AN—x

2 . .
—DE=A\— or = .
(z )& x =5

(2.9)
The direction of the slow flow o' is indicated in Figure 2 by the arrows on the grey curve;
panel (a) is forx = 0 and panel (b) foi = 1. The slow flow does depend on because the
direction of the flow is partly determined by the location lo¢ tequilibrium atz = A on S.
The slow flow is well defined 08—, S™ andS* ™, but not atr = £1 (as long as\ # £1).
We can desingularize the slow flow near= +1 by rescaling time with the factdr:? — 1).
This gives the equation = A — z of thedesingularized flowNote that this time rescaling
reverses the direction of time on the repelling braf€hso care must be taken when relating
the phase portrait of the desingularized system to the piareit of the slow flow.

Let us now focus specifically on the case foe 0, shown in Figure 2(a), because it is
representative for the rang®| < 1. They-nulicline of (2.7) is shown as the dashed black
vertical line (thez-nullcline is.S) and the origin is the only equilibrium, which is a source for
this value of\. The closed curve is a singular orbit composed of two fagtdtaries starting
at the two fold point® 4. concatenated with segments$f Such continuous concatenations
of trajectories of the layer equations and the slow flow alledaandidate$20]. The singular
orbit follows the slow flow onS to a fold point, then ijumps that is, it makes a transition
to a fast trajectory segment that flows to another branc$. ofhe same mechanism returns
the singular orbit to the initial branch &f. It can be shown [142, 164] that the singular orbit
perturbs fors > 0 to a periodic orbit of the Van der Pol equation that ki2&) close to this
candidate. Van der Pol introduced the teetaxation oscillationto describe periodic orbits
that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-
tems in the vicinity of points on the critical manifold wharermal hyperbolicity is lost can
be surprisingly complicated and nothing like what we knoanirsystems with a single time
scale. This section addresses the phenomenon knowrtasaad explosionwhich occurs
in planar slow-fast systems aftersangular Hopf bifurcation We discuss this first for the
example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation As mentioned above, the phase
portrait in Figure 2(a) is representative for a range\efalues. However, the phase portrait
for A\ = 1, shown in Figure 2(b), is degenerate. Linear stability ysialshows that for
e > 0 the unique equilibrium pointz,y) = (X, 1A% — \) is a source fofA| < 1, but a
sink for |\| > 1. Supercritical Hopf bifurcations occur af; = +1. The analysis of how
the observed stable dynamics of the Van der Pol equatioh ¢@gahges with\ from a stable
focus to relaxation oscillations wher> 0 is small was a major development in the theory of
slow-fast systems. Figure 3(a) shows the result of a nuaesrantinuation in the parameter
A of the periodic orbit for= = 0.05 that emerges from the Hopf bifurcation. Close to the
Hopf bifurcation at\y = 1.0 the periodic orbit is small (cyan curve), as is to be expected
However, as\ decreases, the periodic orbit grows very rapidly, wherelibivs the repelling
slow manifoldS? for a long time. In fact, the values offor all orange orbits in Figure 3(a)
are\ ~ 0.993491, that is, they agree to six decimal places. Note that we shevgtowing
orbits only up to a characteristic intermediate size: thgdst periodic orbit in Figure 3(a) just
encompasses the fold pojnt . Upon further continuation in this periodic orbit continues to
grow rapidly until it reaches the shape of a relaxation ¢etoiin; compare with Figure 2(a).

The Hopf bifurcation at; = 1 occurs when the equilibrium moves over the fold point
py. Itis called a singular Hopf bifurcation. The eigenvaluéshe Hopf bifurcation have
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FiG. 3. Numerical continuation of periodic orbits in the Van der Batquation(2.7)for ¢ = 0.05. Panel (a)
shows a selection of periodic orbits: the cyan orbit is acgbsmall limit cycle near the Hopf bifurcation at= Ay,
whereas all the orange orbits occur in a very small paramétégrval at A ~ 0.993491. Panels (b) and (c) are
sketched bifurcation diagrams corresponding to superaitand subcritical singular Hopf bifurcations; herd
denotes the amplitude of the limit cycle.

magnitudeO(s~1/2), so that the periodic orbit is born at the Hopf bifurcatiorihwan inter-
mediate period between the f&@t=—!) and slowO(1) time scales. The size of this periodic
orbit grows rapidly from diamete®(<'/?) to diameterO(1) in an interval of parameter val-
uesA of lengthO(exp(—K/¢)) (for someK > 0 fixed) thatisO(e) close to\y. Figures 3(b)
and (c) are sketches of possible bifurcation diagrams fior the singular Hopf bifurcation
in a supercritical case (which one finds in the Van der Polesgstand in a subcritical case,
respectively; the vertical axis represents the maximallinae of the periodic orbits. The
two bifurcation diagrams are sketches that highlight tleuiees described above. There is a
very small interval of\ where the amplitude of the oscillation grows in a square-fa&hion,
as is to be expected near a Hopf bifurcation. However, thdiamdp then grows extremely
rapidly until it reaches a plateau that corresponds to atiax oscillations.

The rapid growth in amplitude of the periodic orbit near thepHbifurcation is called a
canard explosionThe name canard derives originally from the fact that soeredic orbits
during the canard explosion look a bit like a duck [48]. Intfdahe largest periodic orbit in
Figure 3(a) is an example of such a “duck-shaped” orbit. Mpmeerally, and irrespective of
its actual shape, one now refers to a trajectory eareard orbitif it follows a repelling slow
manifold for a time ofO(1) on the slow time scale. A canard orbit is calleshaximal canard
if it joins attracting and repelling slow manifolds. Sindetslow manifolds are not unique,
this definition depends upon the selection of specific attrg@and repelling slow manifolds;
compare (F6) of Theorem 2.1. Other choices yield trajeesattiat are exponentially close to
one another. In the Van der Pol equation (2.7) the canarasiqul occurs) (e ~%/¢)-close in
parameter space to the point where the manifétis andS” intersect in a maximal canard.
It is associated with the parameter value= 1 where the equilibrium lies at the fold point
p+ of the critical manifoldS; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in genéc planar systems. In
the Van der Pol equation (2.7) the singular Hopf bifurcatimkes place ak = 1 where the
equilibrium lies at a fold point. In a generic family of sldiast planar systems a singular
Hopf bifurcation does not happen exactly at a fold point,di distanc® (<) in both phase
space and parameter space from the coincidence of theleouniii and fold point. One can
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obtain a generic family by modifying the slow equation of tfa der Pol equation (2.7) to
y=A—zx+ay.

In this modified system the equilibrium and fold point stifliecide atr = 1, but the Hopf
bifurcation occurs for: = /1 + € a. A detailed dynamical analysis of canard explosion and
the associated singular Hopf bifurcation using geometriagymptotic methods exists for
planar slow-fast systems [12, 13, 55, 56, 140, 142]; we suizm¢hese results as follows.
THEOREM 2.2 (Canard Explosion iR? [142]). Suppose a planar slow-fast system has
a generic fold poinp,. = (z,,y,) € S, that s,
Foed 0 =0, L in0 =0, L rpan0) £0, L i.0,0) £0
o oot T S L ooyt T )
(2.10)
Assume the critical manifold is locally attracting for< z,, and repelling forz > z,, and
there exists a folded singularity for= 0 at p.., namely,

0 0
g(p*70’0) *07 ag(p*,0,0) #03 ag(

Then a singular Hopf bifurcation and a canard explosion acaiu

p+,0,0) # 0. (2.11)

Ag =Hie+0(E*?)  and (2.12)

e = (Hy 4+ K1) e 4+ O(%/?). (2.13)
The coefficientsl; and K can be calculated explicitly from normal form transfornaeis [142]
or by considering the first Lyapunov coefficient of the Hopfrbation [144].

In the singular limit we have\y = A.. For anye > 0 sufficiently small, the linearized
system [88, 147] at the Hopf bifurcation point has a paisiofjular eigenvalueR7]

o(Ne) =alle) +iB(Xe),
with a(Ag;e) =0, %a()\H; e) # 0and

lin%ﬁ()\H;e) = o0, onthe slowtime scale, and
£—

lir%ﬁ()\H;s) = 0, onthe fasttime scale

£—

2.4. Folded singularities in systems with one fast and twoalv variables. A canard
explosion for a planar system happens in an exponentiayl garameter interval. However,
as soon as there is more than one slow variable, canard odpitsxist forO(1) ranges of a
parameter. To illustrate this, we consider (2.1) for theceglecasemn = 1 andn = 2, and
write it as

ex = f('ray7>\36)a
yl = 01 (‘T? Y, )‘a 5)3 (214)
y2 = g?(wvyvAaE)'

We assume that the critical manifafti= {f = 0} of (2.14) has an attracting shet and a
repelling sheet” that meet at a fold curvé’ as is shown in Figure 4. We also assume that
the fold pointsp, € F on S are generic in the sense of singularity theory, that is,

feer0) = o Ypoae =0

ox
0% f

@(p*,A,O) # 0, D, f(p«,\,0) has full rank one

9
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FIG. 4. The critical manifoldS with attracting sheet“ (red) and repelling sheef” (blue) that meet at a fold
curve F' (grey). The fast flow transverse fois indicated by double (large) arrows and the slow flow$mnear a
folded node by single (small) arrows; see also Figure 5(b).

7

The slow flow is not defined on the fold curve before desingzaaion. At most fold points,
trajectories approach or depart from both the attractirgrapelling sheets of. In generic
systems, there may be isolated points, caftdded singularitieswhere the trajectories of
the slow flow switch from incoming to outgoing. Figure 4 shamsexample of the slow flow
on S and the thick dot orF is the folded singularity at whicli’ changes from attracting to
repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desiagaed slow flow. As described
above, the desingularized slow flow can be expressed as

i = (%f) g+ (a%f) 92,
no= (2F) o1, (2.15)

g2 = (52f) 92.

restricted taS. A fold pointp, € F'is a folded singularity if

of of
A 0) = (ps, A, 0 s A 0) = (ps, A, 0) = 0.
91(p )ay1 (p )+ g2(p )8y2 (p )
There are different possibilities for the stability @f in (2.15). Leto; ando, denote the
eigenvalues of the Jacobian matrix restrictecdbtand evaluated at a folded singularity.
We callp, a

folded saddle, if o309 <0, 012 €R,
folded node, if o309 >0, o012€R,
folded focus, if o102 >0, Im(oy2)#0.

Figure 5 shows phase portraits of the (linearized) slow fiowganels (a) and (b), and the
associated desingularized slow flow, in panels (c) and édpectively. Panels (a) and (c) are
for the case of a folded saddle and panels (b) and (d) of adaidde. For the case of a folded
node one generically has an inequality of the fdem| > |o2|, and we write|og| > |0y,
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FiG. 5. Phase portraits of the locally linearized slow flow near adfad saddle (a) and a folded node (b); the
singular canards defined by the eigendirections are showihiak lines. The corresponding desingularized slow
flow is shown in panels (c) and (d), respectively.

replacing the numeric labels withandw to emphasize the strong and weak eigendirections.
Note that the phase portraits for the slow flow in Figure 5(a) @) are obtained by reversing
the direction of the flow orb” Where%f > 0, that is, by reversing the arrows abakein
the phase portraits of the desingularized slow flow in pa@Isnd (d). It is an important
observation that the trajectories of the slow flow that l@glthe eigendirections of the folded
saddle or node connect the two sheets of the critical mahifobugh the folded singularity
in finite (slow) time; such a trajectory is calledsingular canard We remark that there
are no singular canards for the case of a folded focus, wisiahhly it is not shown here.
Notice further for the case of the folded node in Figure 5fia} the strong singular canard
7s and the fold curve bound a full (shaded) sector of trajeetotiat cross frons* to S™ by
passing through the folded node. The linearized systemgar€i5(b) should be compared
with Figure 4, which shows a nonlinear slow flow near a foldedeand, hence, also has a
full sector of trajectories that pass through the foldedsiarity.

Singular canards act as candidates of maximal canards afltlsystem fore > 0. This
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is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards ifR3). For the slow-fast systeii2.14)with ¢ > 0 sufficiently
small the following holds:
(C1) There are no maximal canards generated by a folded focus
(C2) For afolded saddle the two singular canaris, perturb to maximal canards; .

(C3.1) For a folded node let. := o, /0, < 1. The singular canardy, (“the strong
canard”) always perturbs to a maximal canard. If x~! ¢ N then the singular
canard?,, (“the weak canard”) also perturbs to a maximal canaxg,. We call~,
and~,, primary canards.

(C3.2) For a folded node suppoge> 0 is an integer such the?k +1 < p= ' < 2k +3
andp~! # 2(k + 1). Then, in addition toy, ,,, there arek other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoearsstritical bifurcation for
oddp~! € N and a pitchfork bifurcation for even—! € N.

3. Slow-fast mechanisms for MMOs.In this section we present key theoretical results
of how MMOs arise in slow-fast systems with SAOs occurringifocalized region of the
phase space. The LAOs, on the other hand, are associatethmgighexcursions away from
the localized region of SAOs. More specifically, we discums focal mechanisms that give
rise to such SAOs:

e passage near a folded node, discussed in Section 3.1;

e singular Hopf bifurcation, discussed in Section 3.2;

e three-time-scale problems with a singular Hopf bifurcatidiscussed in Section 3.3;

e tourbillion, discussed in Section 3.4.
Each of these local mechanisms has its distinctive charstits and can give rise to MMOs
when combined with global return mechanisrthat takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturalipaalels from applications and
a classic example is an S-shaped slow manifold; see Sectoan8 the examples in Sec-
tions 4—-6. We do not discuss global returns in detail, bdteratoncentrate on the nature of
the local mechanisms. From the analysis of normal forms wmate quantities that can be
measured in examples of MMOs produced from both numerinallsitions and experimental
data. Specifically, we consider the number of SAOs and thegdsin their amplitudes from
cycle to cycle. We also consider in model systems the gegnoétnearby slow manifolds
that are associated with the approach to and departure frei8AO regions.

3.1. MMOs due to a folded node.Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. Howevég\t are directly relevant to
MMOs because for > 0 small enough, trajectories of (2.1) that flow through a regihere
the reduced system has a folded node, undergo small osecilatBenoit [19, 20] first rec-
ognized these oscillations. Wechselberger and collabirdBl1, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc §86] Guckenheimer [84] com-
puted intersections of slow manifolds near a folded nodenaays along trajectories passing
through these regions. From Theorem 2.3 we know that theneddige ratiod < p < 1 at
the folded node is a crucial quantity that determines theadyos in a neighborhood of the
folded node. In particulag controls the maximal number of oscillations. The studiesme
tioned above use normal forms to describe the dynamics dfaigms near a folded node.
Two equivalent versions of these normal forms are

2

ex = y-—z°,
y = z-—u, (3.1)
z = -,
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and

2

ex = y-—uz°,
j o= —(utDr—z, (32)
z = %u‘

Note thatu is the eigenvalue ratio of system (3.2) and thaf 0 andu # 0 imply that no
equilibria exist in (3.1) and (3.2). If we repla¢e, y, z) in system (3.1) byu, v, w) and call
the time variabler;, then we obtain system (3.2) via the coordinate change

z=0+pw"u, y=010+pv, z=-1+p" w,
and the rescaling of time = 7, /\/1 + u, which gives

L 1 or -1+l -8
T 2(1+ p)? R N

Therefore, in system (3.1) the number of secondary candnaisges with the parameter
Whenv is small,;. ~ 2v. If the “standard” scaling [212} = €'/ %,y = e 3, z = £'/? 2,
andt = ¢'/2 ¢, is applied to system (3.1), we obtain

|

Hence, the phase portraits of system (3.1) for differeniesbfc are topologically equivalent
via linear maps. The normal form (3.3) describes the dynanmiche neighborhood of a
folded node, which is at the origin here. Trajectories ttmhe fromy = oo with 2 > 0
and pass through the folded-node region make a number dfatiscis in the process, before
going off toy = oo with x < 0. There are no returns to the folded-node region in this syste
Let us first focus on the number of small oscillations2Af+ 1 < p~' < 2k + 3, for
somek € N, andu~! # 2(k + 1) then the primary strong canard twists once and the
i-th secondary canarg, 1 < i < k, twists2; + 1 times around the primary weak canaygd
in an O(1) neighborhood of the folded node singularity in system (3a8)ich corresponds
to anO(4/¢) neighborhood in systems (3.1) and (3.2) [212, 233]. (A tw@mtresponds to
a half rotation.) We illustrate this in Figure 6 for system3j3with » = 0.025. Note that
v = 0.025 corresponds tq: ~ 0.0557. Hence,2k +1 < pu~!' ~ 17.953 < 2k + 3
for k = 8, so Theorem 2.3 states that there exist eight secondarydsafhal < i < 8,
along with the strong and weak canargs,,. Figure 6 shows the attracting slow manifold
S¢ and the repelling slow manifold? of (3.3) in a three-dimensional region bounded by
the planes{z = +a}, denoted:, andX_,, with & = 0.14; see Section 8 for details on
how these computations were done. Even though the rescatetahform (3.3) does not
depend oz anymore, we still indicate the dependence of the slow manifolds to distinguish
them from the attracting and repelling sheets of the cfitiwanifold; furthermoreS¢ andsS?
can be thought of as the slow manifolds of (3.1) or (3.2). Buotnifolds are extensions of
Fenichel manifolds and illustrate how the slow manifoldeiisect near the fold curve of the
critical manifold; the fold curve is the-axis. The intersection curves are the canard orbits;
highlighted are the primary strong canard(black) and the first three secondary candrds
(orange) £, (magenta) ands (cyan). The inset shows the intersection curvesoand S
with the planeX, := {z = 0} that contains the folded node at the origin; the intersactio
points of the highlighted canard orbits are also indicaiak to the symmetry of the normal
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FiG. 6. Invariant slow manifolds o{3.3) with » = 0.025 in a neighborhood of the folded node. Both the
attracting slow manifoldS¢ (red) and the repelling slow manifolfll (blue) are extensions of Fenichel manifolds.
The primary strong canarg; (black curve) and three secondary canagds(orange),£2 (magenta) ands (cyan)
are the first four intersection curves 6f¢ and S7; the inset shows how these objects intersect a cross-gsectio
orthogonal to the fold curvéz = 0,y = 0}.

form (3.3), the two slow manifolds'? andS” are each other’s image under rotation by
about they-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped ingiore bounded by strips
of S¢ and S! and two of their intersection curves. The intersection esrare maximal
canards, and the trajectory is forced to follow the osdédla of these two bounding canard
orbits. Figure 6 does not show very clearly how many candreietare, nor does it indicate
the precise number of oscillations. We calculate the flow wfaf8.3) withv = 0.025 to
illustrate this better. Due to the strong contraction alétigthe flow map through the fold
region is strongly contracting in one direction for trajags that do not extend alongy .
Hence, the flow map will be almost one dimensional and can peoapnated by following
trajectories starting on the critical manifold far awayrfrehe fold curve. Figure 7(a) shows
the result of integrating00 equally-spaced initial values on the line segmgent= 20, y =
x? = 400, —3.25 < z < —0.75} until they reach the plane = —10; plotted are the
z-coordinates of the final values versus the initial valuese @an see ten segments in this
flow map that are separated by discontinuities. These diseoties mark sectors on the
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FiG. 7. Numerical study of the number of rotational sectors for eysf3.3) with v = 0.025. Panel (a)
illustrates the flow map through the folded node by plotting £-coordinatesz ..+ Of the first return to a cross-
sectionz = —10 of 500 trajectories with equally-spaced initial valués, v, z) = (20, 400, ziy, ), where—3.25 <
zin < —0.75. Panels (b1)—(b4) show four trajectories projected on®(th, y)-plane that correspond to the points
labeled in panel (c), where;, = —1.25 in panel (b1),z;, = —1.5 in panel (b2),zi, = —2 in panel (b3), and
zin = —2.25in panel (b4).

line segment{z = 20, y = 22 = 400, —3.25 < z < —0.75} that correspond to an
increasing number of SAOs; in fact, each segment corresptand two-dimensional sector
1;,0 < i <9, on the attracting sheét' of the slow manifold. The outer sectfyy on the right
in Figure 7(a) is bounded on the left by the primary strongacdn,; sectorl; is bounded
by v and the first maximal secondary cangid sectorsl;, i = 2,...,8, are bounded by
maximal secondary canard orb@s ; and¢;; and the last (left outer) sectds is bounded
on the right by¢s. On one side of the primary strong cangtdand each maximal secondary
canards;, 1 < i < 8, trajectories follow the repelling slow manifolsf’ and then jump with
decreasing values af On the other side of, and¢;, trajectories jump back to the attracting
slow manifold and make one more oscillation through theddldode region before flowing

towardz = —oo. The four panels (b1)—(b4) in Figure 7 show portions of foajectories
projected onto théz, y)-plane; their initial values arér, y, z) = (20,400, z;,) with z;, as
marked in panel (a), that is,;, = —1.25, ziy, = —1.5, z; = —2 andz;, = —2.25 for

(b1)—(b4), respectively. The trajectory in panel (b1) wassen from the sectdp, bounded
by &, andé&s; this trajectory makes two oscillations. The trajectorpanel (b2) comes from
I5 and, indeed, it makes five oscillations. The other two ttajées, in panel (b3) and (b4),
make seven and nine oscillations, respectively, but sontteest oscillations are too small to
be visible.

The actual widths of the rotational sectors in Figure 7 anmy wmilar due to thes-
dependent rescaling used to obtain (3.3). When the equademsnd ore as in (3.1) and
(3.2), however, the widths of the sectors depend:onn fact, every sector is very small
except for the sector corresponding to maximal rotatioriclvis bounded by, and the fold
curve. For an asymptotic analysis of the widths of the roteti sectors that organize the
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FiG. 8. Schematic diagram of the candidate periodic oihitthat gives rise to MMOs with SAOs produced by
a folded node singularity. The candiddie approaches the folded node along the attracting sk#etred) of the
critical manifold (red) in the sector of maximal rotationsziated with the weak singular canafg,. The distance
to the strong singular canard; is labeleds. When the trajectory reaches the folded node (filled cirdl@mps
along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, becauseitifenvalues of the desingularized
slow flow are—y and—1. Brgns, Krupa and Wechselberger [31] found the following.
THEOREM 3.1. Consider systen2.14) and assume it has a folded node singularity.
At an O(1)-distance from the fold curve, all secondary canards are (s —#)/2)-
neighborhood of the primary strong canard. Hence, the vedihthe rotational sectors;,
1 <i <k, isO(e1=#/2) and the width of sectof; ,; is O(1).
Note that, agx — 0 (the folded saddle-node limit), the number of rotationaitses
increases indefinitely, and the upper bounds on their widilosease t@ (c'/2).

3.1.1. Folded node with a global return mechanismA global return mechanism may
reinject trajectories to the folded node funnel to creatd/dhO. Assuming that the return
happensO(1) away from the fold curve, Theorem 3.1 predicts the numberADSthat
follow. We create a candidate trajectory by following thetflow starting at the folded
node until it returns to the folded node region; this is skettin Figure 8. The global
return mechanism produces one LAO. lbetlenote the distance of the global return point
of a trajectory from the singular strong canardmeasured on a cross-section at a distance
O(1) away from the fold; we use the convention that 0 indicates a return into the funnel
region. Provided is large enough, so that the global return point lands in go#os /5, ; of
maximal rotation, one can show the existence efableMMO with signaturel*+!, where
k is determined by: [31]. We summarize this existence result (in a more genetthg) in
the following theorem.

THEOREM 3.2 (Genericl**! MMOs). Consider syster2.14)with the following as-
sumptions:

(A0) Assume thal < ¢ < 1 is sufficiently smallg'/? < p andk € N is such that
2k+1 < p~t <2k +3.
(A1) The critical manifoldS is (locally) a folded surface.
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(A2) The corresponding reduced problem possesses a folatdalsingularity.

(A3) There exists a candidate periodic orbit (as constrdaba=igure 8) which consists of
a segment o5 (red) within the singular funnel (bounded Byand~; such that it
containsy,,) with the folded node singularity as an endpoint, fast fikdrthe layer
problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is notestdnere because it is cumber-
some to formulate precisely in a general setting; see e31] for the case of a
cubic-shaped critical manifold.

Then there exists a stable MMO with signatufe .

Theorem 3.2 not only requires sufficiently smalk ¢ < 1 but alsop > /2 (while
0 < p < 1). However,e is usually of the orde©(10~2) in applications, so that must be
close to 1 in order for the theorem to apply. Therefore, suakimal MMO signatures are
seldom seen in applications. Furthermore, the SAOs for arCMMith signaturel*+! tend
to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are ntaicier for trajectories that
approach the folded node close to the strong canard and beenof the sectorg; with
1 < k rather than/;, ;. We know from Theorem 3.1 that the maximal width of a sector
with i < k is bounded from above b@(s(*=#)/2) with 1 < 1/3. Whend is O(s(1=#)/2)
one can, indeed, find MMOs with < k£ SAOs that are stable. Geometrically, different
stable MMOs are selected as one moves the flow map in Figuyauf(@r down; since the
rotational sector;. ., for generak-dependent systems has much larger width than the other
sectors, one should expect that the transitions thrdugtith i« < &k happen rather quickly
during a parameter-induced variation®ofWe have the following result [31].

THEOREM 3.3. Suppose syste(@.14) satisfies assumptions (A0)—(A3) of Theorem 3.2
and additionally:

(A5) Ford = 0, the global return point is on the singular strong canayg and aso
passes through zero the return point cros$gwith nonzero speed.

Suppose now that = O(¢'=#)/2) > 0. Then, for sufficiently small < ¢ < 1 and

k € Nsuch that2k + 1 < p~! < 2k + 3 the following holds. For each, 1 < i <
k, there exist subsectos C I; with corresponding distance intervalg; , §;") of widths
O(e(*=m/2) which have the property that & < (5; , ;") then there exists a stable MMO
with signaturel®.

Theorem 3.3 says that we should observe a succession of $tddMOs with increas-
ingly more SAOs as increases (assuming thatemains fixed in such a parameter variation).
In the transition from a? to a1**! MMO signature, that is, in the regions in between intervals
(6;,6;)and(d;,,, 6, ,) we expect to find more complicated signatures, which arellysua
amix of 17 and1**!. As with Theorem 3.2, the amplitudes of most SAOs will be finy is
small, except for those MMOs that have only a few SAOs afteh&ahO.

If 1 = O('/?), that is, assumption (A0) does not hold, then we may stileexgtable
MMO signatures of typé**!, as soon as the global returns falls inside the funnel regich
§ = O(1) [143]; note that: = O(1/£'/?) and the amplitudes of the SAOs for such an MMO
will again be tiny. Ify = O(¢'/2) andd = O('/?) as well, the mixed MMO signatures
with larger-amplitude SAOs are more likely to occur. Forrepée, Figure 20 in Section 4
displays an MMO of type 212 in the Koper model. Here, global returns come very close to
the secondary maximal canagg first slightly to the left (hence, into the rotational secte
with two SAOs) and then slightly to the right (hence, into tb&ational sectoi; with three
SAOs), creating this MMO signature.

The theory described so far does not capture all of the plesdimamics near a folded
node. If higher-order terms are included in the normal fo(&%)-(3.2), then equilibria may
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appear in arO(¢'/?) neighborhood of the folded node as sooruas O(c'/?) or smaller.
This observation motivates our study of the singular Hofafroation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)
always satisfyf (z,y, A, €) = 0; generically, they are located in regions where the astaatia
critical manifold.S is normally hyperbolic. However, in generic one-paraméderilies of
slow-fast systems, the equilibrium may cross a folébofin generic families with two slow
variables, the fold point (including the specific parametalue) at which the equilibrium
crosses the fold curve of the critical manifold has beereda#ifolded saddle-node of type
Il [161]. Folded nodes and saddles of the reduced system apgajettions of equilibria of
the full slow-fast system, but the folded saddle-nodes péty are. Where > 0, the system
has a singular Hopf bifurcation, which occurs genericatiy alistanceO(z) in parameter
space from the folded saddle-node of type Il [85].

In order to obtain a normal form for the singular Hopf bifuioa, we follow [85] and
add higher-order terms to the normal form (3.1) of the foldede, to obtain

e = y— a2
y = z-—ux, (3.4)

2 = —v—ax—by—c=z.

As with (3.1), we apply the standard scaling [212}= /%%, y = €3, z = /% Z, and
t = £'/2 ¢; system (3.4) then becomes

¥ o= y—1x2
{ y = z-7, (3.5)
7 = —v—e2az—cby—e/?cz.

This scaled vector field provides @\ <'/?)-zoom of the neighborhood of the folded sin-
gularity where SAOs are expected to occur. The scaling reswirom the first equations
while the coefficients, b andc of the third equation becomedependenty remains fixed.
Note that the coefficient af tends ta) faster than those af, z ase — 0. This feature makes
the definition of normal forms for slow-fast systems somevyghablematic: scalings of the
state-space variables and the singular perturbation essrinteract with each other. These
e-dependent scalings play an important role in “blow-up”lgsia of fold points and folded
singularities.

In contrast to the normal form (3.1) of a folded node, syst8rf)(possesses equilibria
for all values ofv. If v = O(1) then these equilibria are far from the origin, with coord&sa
that areO(s~'/2) or larger. Since we want to study the dynamics near a foldeglirity,
thee-dependent terms in (3.5) play little role in this paramesgime and the system can be
regarded as an inconsequential perturbation of the foldelé normal form (3.3) and Theo-
rems 3.2 and 3.3 apply. On the other hand; i O(c'/?) or smaller then one equilibrium
lies within anO(1)-size domain of the phase space. This equilibrium is detexchby the
coefficientsz andc (to leading order) and plays an important role in the localadyics near a
folded singularity [85, 143]. In particular, the equilibmh undergoes a singular Hopf bifurca-
tion for v = O(¢) [85]. Thus, for parameter values= O(<'/2) or smaller, the higher-order
terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system thééngoes a singular Hopf
bifurcation? Several groups have derived system (3.4)dimp the termby because it has
higher order ire after the scaling. However, this term appears in the forrfarighe lowest-
order term inc of the first Lyapunov coefficient of the Hopf bifurcation of.43 and, hence,

18



(b)

0.1 y -0.02

-1 021

FiG. 9. Phase portrait of an MMO periodic orbil’ (black curve) for syster(.6) with (v, a,b,c,e) =
(0.0072168, —0.3872, —0.3251,1.17,0.01). The critical manifoldS (grey) is the S-shaped surface with folds at
rz=0andx = —%. The orbitI" is composed of two slow segments near the two attractingsbég and two fast
segments, with SAOs in the region near the equilibriuom the repelling sheet™ of S just past the fold at = 0.
Panel (a) shows a three-dimensional view and panel (b) tbgeption onto thez, y)-plane.

must be retained if we hope to determine a complete unfoldirige singular Hopf bifurca-
tion [85].

The MMOs that occur close to the singular Hopf bifurcatiovéh@a somewhat dif-
ferent character than those generated via the folded nodbansm. Guckenheimer and
Willms [93] observed that a subcritical (ordinary) Hopfloiéation may result in large regions
of the parameter space being funneled into a small neiglobdrbf a saddle equilibrium with
unstable complex eigenvalues. After trajectories comsecto the equilibrium, SAOs grow
in magnitude as the trajectory spirals away from the equuiib. Similar MMOs may pass
near a singular Hopf bifurcation. Then the equilibrium isaddie-focus and trajectories on
the attracting Fenichel manifold are funneled into a regiose to the one-dimensional stable
manifold of the equilibrium. SAOs occur as the trajectoriyas away from the equilibrium.
We review here our incomplete understanding of singularftdprcations and the MMOs
passing nearby.

The normal form (3.4) does not yield MMOs because there islabad return mecha-
nism; trajectories that leave the vicinity of the equilibri point and the fold curve flow to
infinity in finite time. This property can be changed by addingubic term to the normal
form that makes the critical manifold S-shaped, similahi®¥an der Pol equation:

ex = y—a?—a3
y = z—u, (3.6)
2 = —v—ax—by—cz.

This version of the normal form for singular Hopf bifurcatiwith global reinjection has been
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Fic. 10. A chaotic MMO trajectory of system (3.6) with (v,a,b,c,e) =
(0.004564, —0.2317,0.2053,1.17,0.01). Panel (a) shows the time series of thecoordinate of the tra-
jectory from¢ = 100 to ¢ = 200, and panel (b) the projection of the trajectory onto the y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138).example of the overall
structure of MMOs in system (3.6) with smallis shown in Figure 9 fofv, a,b,¢,e) =
(0.0072168, —0.3872, —0.3251, 1.17,0.01); note thatr = O(¢). The S-shaped critical man-
ifold S'is the grey surface in Figure 9(a); a top view is shown in pénelThe manifoldS has
two fold curves, one at = 0 and one atr = —%, that decompos§' into one repelling and
two attracting sheets. For our choice of parameters thastsex saddle-focus equilibriupm
on the repelling sheet that is close to the origin (which esftiided node singularity). The
equilibriump has a pair of unstable complex conjugate eigenvalues. AeskdlilO periodic
orbit ", shown as the black curve in Figure 9, interacts withs follows. Starting just past
the fold atz = 0, that is, in the region near the origin with< 0, the orbitI" spirals away
from p along its two-dimensional unstable manifold and repegtedersects the repelling
sheetS™ of S. As soon ad” intersects the repelling slow manifold (not shown), it jle1ip
the attracting sheet of with =z < —%. The orbitI" then follows this sheet to the fold at
T = —%, after which it jumps to the attracting sheet®fvith = > 0. ThenI returns to the
neighborhood op and the periodic motion repeats.

The MMO periodic orbitl” displayed in Figure 9 is only one of many types of complex
dynamics present in system (3.6). One aspect of the compieandgics in system (3.6) is
the fate of the periodic orbits created in the Hopf bifurcati There are parameter regimes
for (3.6) with stable periodic orbits of small amplitude ated by a supercritical Hopf bi-
furcation. Subsequent bifurcations of these periodictsnmiay be period-doubling or torus
bifurcations [85]. Period-doubling cascades can givetdsenall-amplitude chaotic invariant
sets that may be associated with chaotic MMOs. For examjgeré-10 plots a chaotic MMO
trajectory for (3.6) with(v, a, b, ¢,e) = (0.004564, —0.2317,0.2053,1.17,0.01) that arises
from such a period-doubling cascade of the periodic orbirging from the singular Hopf
bifurcation. It appears that it is chaotic because of thepedndicity of its time series, shown
for the z-coordinate in Figure 10(a). A two-dimensional projectimmo the(z,y)-plane
is shown in panel (b). Note that this trajectory does not colose to either the equilibrium
pointp or the folded singularity at the origin. Asdecreases from the value used in Figure 10
(wherev is already of orde© (<)), the large-amplitude epochs of the trajectories becos® le
frequent and soon disappear, resulting in a small-amgitiotic attractor. Section 4 dis-
cusses a rescaled subfamily of (3.6), giving further exaspf complex dynamics and some
analysis of the organization of MMOs associated with thistey.

We would like to characterize the parameter regimes with MM@ which the SAOs
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FiIG. 11. Tangency between the unstable manifidld (p) of the equilibrium and the repelling slow manifold
ST of (3.6)with (v,a,b,c,e) = (0.007057,0.008870, —0.5045,1.17,0.01). Panel (a) shows trajectories of
W (p) (red) andS? (blue) that are terminated on the green cross-sectbdefined byy = 0.3. The intersections
W (p) N X (with points on computed trajectories marked '0’) affl N X (with points on computed trajectories
marked 'x’) are shown in panel (b).

are solely or partially due to spiraling along the unstabsnifold 17 (p) of a saddle-focus
p. Analysis of this issue appears to be significantly more dmajed than that for folded
nodes and has barely begun. We offer a few insights in logdtiese parameter regimes.
First, we think ofv in the normal form (3.6) of the singular Hopf bifurcation & t'pri-
mary” bifurcation parameter and seek ranges’offhere MMOs are found. If the Hopf
bifurcation atv = vy is supercritical then, for parameters close enough to thef Hb
furcation, the limit set ofi¥*(p) is just the bifurcating stable periodic orbit. The onset of
MMOs is observed to occur at a distance= O(e) from the Hopf bifurcation due to a new
type of bifurcation [85]. This bifurcation occurs at parders wherep is a saddle-focus and
W (p) is tangent to the two-dimensional repelling Fenichel nw@difS”. At first glance
one might think that two unstable objects in a dynamicaleystannot intersect. However,
recall thatWW*(p) consists of trajectories that approgelast — —oo while ST consists
of forward trajectories that remain slow for @(1) time on the slow time scale. Conse-
quently, it is possible for a single trajectory to satisfe ttriteria to belong to both of these
objects. Figure 11 illustrates an example of a tangencydmtW “(p) andS? for (3.6) with
(v,a,b,c,e) = (0.007057,0.008870,—0.5045,1.17,0.01) (note thatr = O(e) and, hence,
very close tavy ~ —8.587 x 10~°). Shown are a collection of trajectories &in“(p) (red)
that start close tp and end in the cross-sectiah:= {y = 0.3}, together with a collection
of trajectories oS! that start on the repelling sheet of the critical manifold afso end in
Y; see Section 8.1 for details of the method used to compusge timanifolds. Figure 11(b)
shows the tangency of the two intersection curvedl@f(p) and ST with 3. The manifold
ST is a surface that separates trajectories that make largétade excursions from ones that
remain in the vicinity ofp. For values ofs such thatV*(p) andS? do not intersect, the limit
set of W*(p) remains small. By varying such that we move further away fromy, the

21



MMOs arise as soon d&“(p) andS? begin to intersect; see also Section 4.

The number of SAOs that an MMO periodic orbitmakes alondgV*(p) is determined
by how closel’ comes tgp and by the ratio of real to imaginary parts of the complex eige
values ofp. The only way to approach is along its stable manifol@’*(p), so an MMO
like that displayed in Figure 9 must come very closdié(p). The minimum distancé
between an MMO anil’¢(p) is analogous to the distanéef a trajectory from the primary
strong canard in the case of folded nodes. Unlike the casefafiad node, the maximal
amplitude of the SAOs observed né&i* (p) is largely independent af. What does change
asd — 0 is that the epoch of SAOs increases in length and begins withlations that are
too small to be detectable. There has been little investigatf how the parameters of the
normal form (3.6) influencé, but Figure 8 in Guckenheimer [85] illustrates tlladepends
upon the parameterin a complex manner. There are parameter regions where dhalgl
returns of MMO trajectories are funneled closelt®’ (p). Since MMOs are not found im-
mediately adjacent to supercritical Hopf bifurcations thtio of real to imaginary parts of
the complex eigenvalues remains bounded away fiamn MMO trajectories. This prevents
the appearance of extraordinarily long transients witlillasions that grow arbitrarily slowly
like those found near a subcritical Hopf bifurcation; seet®a 5 and also [87, Figure 5].

The singular-Hopf and folded-node mechanisms for cre&if@s are not mutually ex-
clusive and can be present in a single MMO in the transitiginme with = O(c'/?). The
specific behavior that one finds depends in part on whethedhidibriump near the singular
Hopf bifurcation is a saddle-focus with a pair of complexagigalues or a saddle with two real
eigenvalues. The MMO displayed in Figure 21 contains som@<sSthat lie inside the rota-
tional sectors between the attracting and repelling slowifolals and some SAOs that follow
the unstable manifold of the saddle-focus equilibrium. @mdther hand, we note that SAOs
cannot be associated with a saddle equilibrium that hasrealyeigenvalues; this occurs in a
parameter region with > (a-+c)e'/? (to leading order), but = O('/2). In this case, SAOs
are solely associated with the folded node-type mechanesuribed forr = O(1) (that is,

p = O(1)). Krupa and Wechselberger [143] analyzed the transitignmer = O(<'/?) and
showed that the folded node theory can be extended into dingsneter regime provided the
global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systemsWhen the coefficients, a, b andc in the
normal forms (3.4) and (3.6) of the singular Hopf bifurcat@are of orderO(e) or smaller,
thenz evolves slowly relative tg and the system actually has three time scales: fast, slow
and super slow. Krupa et al. [138] studied this regime witbrngetric methods and asymptotic
expansions for the cage= ¢ = 0. They observed MMOs for which the amplitudes of the
SAOs remain relatively large. Their analysis is based upsoaling the system such that it
has two fast variables and one slow variable. To make the-imge-scale structure explicit,
we setv = i, a = £a, b = eb andc = e¢. Rescaling the singular-Hopf normal form (3.6) of
Section 3.2 byt = &'/2 7,y = e, 2 = €'/ z, andt = £'/2 t yields

T = y- z2 — 51/2303,
y = z—u, (3.7
i = e(-v—eax—cby—e/?éz),

which is still a singularly perturbed system, but now wittotfast variablesy andy, and a
slow variablez. An equilibrium lies within anO(1)-size domain around the origin if =
O(e'/?) or smaller, i.e.y = O(¢*/?) or smaller. This equilibrium plays an important role in
the dynamics if it is of saddle-focus type. In particulamiidergoes a Hopf bifurcation for
7= 0(¢e),i.e.,v=0(e?).
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FIG. 12. Phase portraits of systei3.8) for three different values of. Shown are several trajectories (blue)
and one trajectory (red) that approximates a separatrix: €achz, there is a single equilibrium poiptat (z,y) =
(2, 22). Panels (a)-(c) are for = 2, 2 = 0.25 andz = 0, for whichp is a stable node, a stable focus and a
center surrounded by a continuous family of periodic orbigspectively. The boundary of this family is the maximal
canard.

The two-dimensional layer problem of (3.7)

2

T = y-—uz°
y = z—ux (3.8)
z = 0,

in which z acts as a parameter, is exactly the same system obtained an#lysis of the
planar canard problem, where the paramatirreplaced by; compare with system (2.7).

Note that (3.8) has a unique equilibriynfor each value of, given by(z, y) = (z, 22).
Figure 12 shows phase portraits of (3.8) in they)-plane for three different values of
namelyz = 2, z = 0.25 andz = 0 in panels (a), (b) and (c), respectively. For> 0,
the equilibriump is an attracting fixed point in thér, y)-plane; it is a node fog > 1 and
a focus for0 < z < 1; note that this information also determines the type of ldziim
of (3.7) obtained forr = O(c'/?) to leading order — the same argument can also be used
to determine the basin boundary of the saddle-focus equifibin Section 3.2. The basin
boundary ofp is an unbounded trajectory that is shown in red in panelsr{d)(p). When
z = 0, the vector field (3.8) has a time-reversing symmetry thdudes the existence of
a family of periodic orbits. Indeed, the functidi(z,y) = exp(—2y) (y — 2® + 1) is an
integral of the motion and the level cur¥é = 0 is a parabola that separates periodic orbits
surroundingp (the origin) from unbounded orbits that lie below the patakend become
unbounded withe — £oc in finite time.

System (3.7) can be viewed as a perturbation of (3.8) whemains small and is slowly
varying compared t@ andy. In this case, changes i can be used to monitor the SAOs of
trajectories. We focus on the case= ¢ = 0 studied in [138]. To find parameters for which
system (3.6) has MMOs, we fix = —0.005 ande = 0.01 and varyv so thatz increases
wheny is large but decreases when the system has SAOs. More pyecigewant the
average value of to increase during epochs of SAOs and decrease during epbth©s.
The changes in should be of sufficient magnitude to drive the trajectoryoasrthe slow
manifolds and trigger a transition between these epochgur&il3(a) displays a periodic
MMO with signaturel? found atr = 0.00015 (which is of orderO(s2)). The projection
in panel (a2) of the orbit onto thez, y)-plane shows that decreases approximately from
—0.003713 to —0.004143 while the trajectory makes four SAOs, andncreases during a
single LAO. Note that: = 0 on the planey = 0.03. System (3.6) also possesses two
equilibria with z-coordinates given by-+/—v/(be), which equalsty/3 in this case. Since
the MMO signature shown in Figure 13(a2) is confined to the axear the origin (in the
z-direction), these two equilibria have no influence on theadyics.

As v increases, the value of for which 2 = 0 increases, and trajectories have a
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FiIG. 13. Stable periodic MMOs of systef8.6) with (a, b, ¢,e) = (0, —0.005,0,0.01). Row (a) shows the
periodic MMO with signaturel* for » = 0.00015 as a time series af in panel (al) and in projection onto the

(2, y)-plane in panel (a2); similar projections are shown in rovj for » = 0.00032, where the periodic MMO has
signature9?.

propensity to pass more quickly through the region of SAOguie 13(b) shows a peri-
odic MMO with signatured! obtained fory = 0.00032. This value ofv lies close to the
upper end of the range in which MMOs seem to exist for the aheaties of(a, b, ¢, &) =
(0,—0.005,0,0.01). As the projection in panel (b2) illustrates, the averagee/af z in-
creases|¢| decreases) during each LAO, but it takes nine LAOs beforoises the thresh-
old into the region of SAOs. On the other hand, a single SA@gdke trajectory back to the
region of LAOs.

For intermediate values of € (0.00015, 0.00032), the system displays aperiodic MMOs
as well as periodic MMOs with a variety of signatures. Thegeatures can be analyzed via
an approximately one-dimensional return map to a crosseseatx = 0. Returns to this
cross-section with: decreasing appear to lie along a thin strip; this is illusdain Fig-
ure 14(a) forr = 0.0003, for which the system appears to have aperiodic MMOs. Thre thi
strip in Figure 14(a) is approximately given by the lijpe= 0.1153 2 —0.004626 (andz = 0).

If we take600 initial conditions on this line withr € [—0.0043, —0.004] then their next return
to the cross-section fall onto two segments that are clodgeetmitial line and within the seg-
mentz € [—0.0043, —0.004]. Figure 14(b) graphs these returns, showing#w®ordinates

Z out Of returns of thes00 initial conditions versus their inital-coordinates ;,,; the diagonal
Zout = Zin IS @lso pictured. This figure suggests that the return mapthedine segment
can be approximated by a rank-one map with two segments pésicose to one, separated
by a steep segment for initial valueg, ~ —0.004055. The return map increaseson the
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FiG. 14. Return map of syste(®.6) with (v, a, b, ¢,e) = (0.0003, 0, —0.005, 0, 0.01) to the sectionc = 0.
Panel (a) shows that the return is almost one dimensional@line that is approximately given ly= 0.1153 z—
0.004626. Thez-coordinates of the returns for initial conditions alongstine with z € [—0.0043, —0.004] are
plotted versus their initiak-values in panel (b).

left “branch” of this map and decreasesn the right branch. This is the behavior described
above since larger values ofcorrespond to SAOs, the smaller values to LAOs. Trajectorie
that do not hit the steep section of the map go back and fopteatedly between the two
branches. Ag varies, the “shape” of the return map remains qualitatileéysame: the two
branches still have slopes close to one, but their off-gh fthe diagonal varies. Approxi-
mately forv < 0.00013, the image of the right branch, representing SAOs, mapsédf it
while for v > 0.00034, the image of the left branch maps to itself, and the systdylas a
large periodic relaxation oscillation with no SAOs. In tlaage ofy where MMOs do exist,
kneading theoryor one-dimensional maps [38] can be applied to the numigriganerated
return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z;, ~ —0.004055
comes from computing intersections of the attracting apélfimg slow manifolds. We com-
puted forward trajectories from initial conditions on thiracting sheet (withe < —2
and backward trajectories from initial conditions on thpeléng sheet of the critical man-
ifold to their intersection with the cross-sectigm = 0}. Since the trajectories quickly
converge to the attracting and repelling slow manifoldgjrtintersections with{z = 0}
give a good approximation of the intersection curves of tbe snanifolds with{z = 0}.
These two intersection curves have one point in common, wiBi@pproximately(y, z) =
(—0.0050941, —0.0040564). Hence, this point lies in the region that gives rise to tleest
segment shown in Figure 14(b). By definition, the intergectf the attracting and repelling
slow manifolds is a maximal canard. Initial conditions oe titoss-sectiofz = 0} to one
side of the repelling manifold result in SAOs while traja@s on the other side result in fast
jumps to the other sheet of the attracting slow manifoldwit> 0). Thus, we have con-
firmed numerically that canard orbits separate the two bramof the return map displayed
in Figure 14(b); compare also with Figure 7(a), which illagts that the one-dimensional
return map calculated near a folded node has several stetpnsethat correspond to the
primary strong canard and the maximal secondary canardie @iroblem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-
tion 3.3 that the abrupt transitions between SAOs and LAOsystem (3.7) are a conse-
guence of the three-time-scale structure, which allowusew the system as having two
fast variables and only one slow variable. Such a systemtwittor more fast variables may
have a Hopf bifurcation in the layer equations. We now caarsibis situation, and assume
that a pair of complex eigenvalues of the layer equationssciiwe imaginary axis as one fol-
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lows a trajectory of the reduced system. Wheg 0 one observes a slow motion or drift of
trajectories through the region near the Hopf bifurcatiothie layer equations. Due to the
complex eigenvalues in the fast directions, trajectogp@sbaround the slow manifold, which
gives rise to oscillations. The amplitude of such an odailtainitially decreases (while the
real part of the complex eigenvalues is negative) and themase again (after the real part
becomes positive). We refer to this situation ayaamic Hopf bifurcationOur primary goal

is to determine when MMOs have SAOSs that are associated wlginamic Hopf bifurcation.
Note that, unlike in systems with a single fast variables tiipe of SAO is neither associated
with a folded singularity of the critical manifold nor with(aingular) Hopf bifurcation of the
system fore # 0.

A well-known example of a dynamic Hopf bifurcation is the pbenenon of delayed
Hopf bifurcation. For simplicity, we discuss it here for astgm with one slow and two fast
variables, the lowest dimensions possible. Consider a segmon the one-dimensional
critical manifold.S along which the layer equations undergo a Hopf bifurcatiimt means
that the linearization of the layer equations aldngas a pair of complex eigenvaluest i3
that cross the imaginary axis transversally. In the casesofp@rcritical Hopf bifurcation, a
one-parameter family of attracting periodic orbits of thedr equations, parameterized by the
slow variable, emanates from the poliif € L wherea = 0. If a trajectoryu(t) of the full
system comes close fonear a point.,, € L that lies at a distanc& = |L,, — Lo| = O(1)
from Ly, thenu(t) will come exponentially close td on the slow time scale. The layer
equations undergo a Hopf bifurcation, but, in analytic ey, «(¢) remains close td. for
anO(1)-distanceafter the Hopf bifurcation has occurred [168]. Thislayhappens because
it takes anO(1) time for u(t) to be repelled away froni. In particular,«(t) does not
immediately follow the periodic orbits of the layer equatioemanating froni,. The slow-
fast analysis identifies a definite “jump” point (callecbaffer poin) at whichu(t) leaves
L and approaches the periodic orbits, if it has not done saeeaThere are SAOs along
L in a delayed Hopf bifurcation, but they are exponentiallyaBmear L, and the jump
from L to the periodic orbits may occur within a single period of 8&0s. Thus, SAOs
near a delayed Hopf bifurcation are typically so small thaftare unobservable in practical
examples. This situation is reminiscent of MMOs associatél folded nodes withh =
O(1). More specifically, Theorem 3.2 predicts maximét~' MMO signatures but, due to
strong contraction toward the primary weak canaidon S, ., only the final rotation is
actually observed; see Figure 7(b4).

In a number of examples, such as those in Sections 6 and 7cturadlpobserves MMOs
with SAOs near a dynamic Hopf bifurcation whose amplitudasain observably large. We
adopt the ternmtourbillion from Wallet [232] to describe the trajectories passing tigio a
dynamic Hopf bifurcation with oscillations whose amplieutemains above an observable
threshold. We discuss the tourbillion and how it gives risB1MOs also in systems with one
slow and two fast variables. Consider the model system

T = —y+zz,
U = x+zy, (3.9
z = g

that is obtained by linearization of the layer equationsafatlynamic Hopf bifurcation. This
equation is separable in polar coordinates, yielding « ¢t r for trajectories that have initial
conditions in the plangz = 0}. Hence, the general solutioni$t) = r(0) exp(e t?/2),
which means that the amplitude of a solution decreases far 0 and then increases for
z > 0. We conclude thaf% = exp(4) and that the oscillations have almost constant
amplitude over a time interval df//e. If the r coordinate of a trajectory decreases te 1
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Fic. 15. Time series of ther-coordinate of a trajectory of(3.10) with initial point (z,y,z) =
(—1,0.8,—0.12). Panels (a)—(c) are foh = 0.1 and fore = 0.006, € = 0.012 ande = 0.02, respectively.

at a value of: that isO(,/¢), then the minimum amplitude of the oscillations associatid
the dynamic Hopf bifurcation will still be observable. Thelitudes of these oscillations
and the coupling of with the distance of approach to the dynamic Hopf point otteré&ze the
tourbillion regime and distinguishes it from a delayed Hbftircation. In a delayed Hopf
bifurcation, a trajectory approaches the slow manifoldistaticeO(1) from the dynamic
Hopf point, while in a tourbillion, the approach to the slovamifold occurs withinO (/)
of the layer containing the dynamic Hopf point. Whers fixed in a system, the distinction
between a delayed Hopf point and a tourbillion becomes édljdout the distinction is clear
in many examples.

The system (3.9) describes SAOs with distinctly nonzero langes locally near the
point where the dynamic Hopf bifurcation occurs in the laget account for characteristic
abrupt transitions at the beginning and end of an SAO epotttiman MMO, such as those in
Sections 6 and 7, because these transitions depend upoamok that are not part of the
local analysis of system (3.9) . There is as yet no compréestidy of possible geometric
mechanisms that determine the sudden start and the end ofiensef SAOs arising from
a tourbillion. This paper largely avoids this issue and emtiates on local mechanisms for
generating the SAOs of MMOs. Nevertheless, the followingregle illustrates one mech-
anism for an abrupt jump away from SAQOs of a tourbillion. ddes a “dynamic” section
through the unfolding of the codimension-two Bogdanoverakbifurcation [88], defined as

o=y,
U o= A+zy—az2—uzy, (3.10)
z = e

As before, we regard as a slowly varying parameter. Far> 0 ande = 0, the system has
two straight lines of equilibria defined by = ++/\ andy = 0. A supercritical Hopf bifur-
cation occurs along the line of equilibria with> 0. The family of periodic orbits born at
this bifurcation terminates at a homoclinic orbit. Moregthere is always a bounded region
of the (z, y)-plane in which oscillations around the equilibrium ocdis is the tourbillion
region. The line of (saddle) equilibria with < 0 of the layer equations perturbs to a Fenichel
manifold of saddle type and its stable and unstable marsifgidde the entrance and exit to
the tourbillion in this example. As we have seen, the numibesoillations and their mini-
mum amplitude is determined both by the magnitude of théiniondition and of. This

is illustrated in Figure 15 with trajectories of system (®.1or A = 0.1 and different values
of e — all starting from the initial conditiofix, y, z) = (—1,0.8, —0.12) that lies outside the
tourbillion region. Note that andy areO(1) quantities, and so the condition for a tourbil-
lion is that|z| is of order,/e. In Figure 15(a) foe = 0.006 we do not find a tourbillion but
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observe oscillations that decay rapidly, are very smalafathile and then grow rapidly again
before the trajectory jumps away. In panel (b) foe= 0.012, on the other hand, the oscil-
lations decay and then grow more gradually and they remadabeérvable size throughout.
We conclude that is now just about large enough to speak of a tourbillion neggassage
through which results in seven SAOs before the jump occuwseten larger values afthe
same initial condition results in oscillations that maintan almost constant amplitiude; see
Figure 15(c) for=: = 0.02. Observe that, owing to the faster drift through the regiearrthe
Hopf bifurcation in the layer system, we now find only four Sg\@efore the trajectory jumps
away.

It is interesting to compare the SAOs associated with a tiorbwith those occurring
near a folded node or near a singular Hopf bifurcation. Offerdince is that the period of the
oscillations isO(¢) (slow time) for the tourbillion, while it iD (/) for the other two cases.
In each of the cases, the data that determines the number@$ &Aslightly different. For
the folded node, the eigenvalue ratiometermines the number of rotational sectors, and the
distance of the global return to the weak canard relativeeésingular perturbation parameter
determines which rotational sector a trajectory enters th@singular Hopf bifurcation, the
distance of the global return to the stable manifold of thedgafocus equilibrium sets the
minimum amplitude and duration of the SAOs. For a tourhillithe number of SAOs is
governed by the singular perturbation parameter and thandis of the global return to the
delayed Hopf bifurcation point. Moreover, the terminatioihthe SAOs for a tourbillion
depends upon either a global mechanism or an arbitrarytbietfor the amplitude of SAOs.
In contrast, the oscillations of a folded node end “on theind while the intersections of
the unstable manifold of the equilibrium and the repellifmyvsmanifold typically limit the
amplitude of SAOs near a singular Hopf bifurcation.

3.5. Summary of local mechanisms for SAOsWe now summarize the main results
of this review section on the local mechanisms that givetadgMOs. For systems with a
single fast variable, the local mechanisms responsibl&A@s must involve a mixture of the
two time scales. We distinguish three regions near foldetta@nd folded saddle-nodes that
yield MMOs:

1. Folded Nodes:If the parameters satisfy suitable order conditions={ O(1)) so
that no equilibrium of the full system is near the folded ndken the theory of
Section 3.1 applies and SAOs are due totthisting of slow manifolds

2. Singular Hopf:As is shown in the Section 3.2, the dynamics near a singulpf bie
furcation ¢ = O(e)) tends to be quite complicated. SAOs occur when the trajgcto
follows theunstable manifold of a saddle-focus

3. Transition RegimeThe folded-node and singular-Hopf regimes are separated by
transition regime with intermediate valuesiof= O(,/¢). Extensions of the folded
node theory have been developed in [143]; note that the peam in [143] not
only represents the eigenvalue ratio but also describefistance of the equilibrium
to the folded node in a blown-up system. In this transitiagime, it is possible for
the SAOs to pass through the rotational sectors of the fahbeigas well asspiral
along the unstable manifold of the saddle-focus equiliriu

In systems with at least two fast variables the tourbillioovides a different local mecha-
nism that generates SAOs. Here, the layer equations haveleorigenvalues and the SAOs
are aligned with the fast directions of the system. Littlstsynatic study of the tourbillion as
a mechanism that generates MMOs has been carried out, atitethrg remains fragmentary.

Finally, three-dimensional systems with three time scabas exhibit all of the mech-
anisms discussed in this section. Namely a three-timeesyatem may be considered as
having two slow variables, in which case the folded-node sindular-Hopf mechanisms
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may be found, or, alternatively, as having two fast variap¥ehich allows for the possibility
of a tourbillion.
The following sections are case studies that illustratsdtudifferent local mechanisms
for MMOs:
e TheKoper modein Section 4 is a three-dimensional slow-fast system withl@efd
node and a supercritical singular Hopf bifurcation.
e The three-dimensionaéduced Hodgkin—Huxley modiel Section 5 also features a
folded node, but has a subcritical singular Hopf bifuraatio
e The four-dimensionaDIsen model of the peroxidase-oxidase reactioSection 6
displays MMOs associated with a tourbillion.
e The Showalter—Noyes—Bar-Eli model Section 7 is a seven-dimensional system
that exhibits MMOs. The global mechanism that organizes¢HdMOs is un-
known, but we show here that their SAOs are due to a tourbillio

4. MMOs in the Koper model of chemical reactors. Our first case study is a system
introduced by Koper [122]. We use it to illustrate how MMOssarnear a folded node and
near a (supercritical) singular Hopf bifurcation in a sfieanodel equation. The equations
of the Koper model are

a1t = ky—a3+3x— A
g = x—2y+z, (4.1)
z = EQ(yfz)a

where) andk are parameters. Koper studied this three-dimensiondizéelanodel of chem-
ical reactions with MMOs. While this example is well known, weisit its analysis and
enhance it by using the recently developed theory outlinetthé previous sections. When
€1 andey are both small, system (4.1) has three time scales; whensgriysmall, it is a
slow-fast system with two slow variablgsand = and one fast variable. We note that a
two-dimensional variant of (4.1) was first studied by Boissde and De Kepper [26] in their
efforts to understand bistability and oscillations of clheahsystems. The first analysis of
MMOs in the three-dimensional extended model was carri¢thpoper who explained the
MMOs by invoking the presence of a Shikov homoclinic bifurcation.

As mentioned in Section 3.2, the Koper model (4.1) is a rescalibfamily of the cubic
normal form (3.6) for the singular Hopf bifurcation. To séwest replace(x, y, z) in sys-
tem (4.1) by(u, v, w) and consider the affine coordinate change
u—1 _kv—A+2 C2v—w-—1

R S S R
Now also scale time by the facte},’i, where we assume that< 0. Then (4.1) becomes (3.6)
with e = —ke1/81,a = 18/k, b = 81e3/k?, c = —9(eo + 2)/k andv = (3ea A — 669 —
3 kea/k?. Note that the coefficients of the normal form satisfy

xr =

2b—ac+a®>=0,

which means that the Koper model (4.1) is only equivalentstotzfamily of the singular-Hopf
normal form (3.6). However, (4.1) still has a folded node argingular Hopf bifurcation in
certain parameter regimes.

Let us first analyze the parameter regimes where SAOs areirneghby a folded node.
To this end, we work both with system (4.1) and the equivadgatem

g1 = y—a+3ux,
g = kx—2(y+A+z, (4.2)
2 = ea(Ay—2),
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which we refer to as the symmetric Koper model, because ithteasymmetry
(I’y,z7)\7k77) - (—I, -Y, _27_)\7k77)' (43)

System (4.2) is obtained by replacifg, y, z) in system (4.1) by(u, v, w) and applying the
coordinate change = u, y = kv — A andz = kw. We focus our analysis on the case
g2 = 1 and consider (4.2) as a system with two slow variables. @bstmat the critical
manifold of (4.2),

S ={(z,y, 2) €R3|y:x373w:: c(z)},

no longer depends ok and A. This cubic-shaped critical manifoll has two fold curves
Fy ={(z,y,2) € R® | & = +1,y = F2}, which gives the decomposition

S=8%"UF_US"UF, U8,

whereS*~ = Sn{z < -1}, 5" = SNn{-1 <z < 1} andS*" = SN{l < =z}
are normally hyperbolic. Note that** are attracting and” is repelling. To derive the
desingularized slow flow of we consider the algebraic equati®r- y — ¢(x), obtained by
settinge; = 0 in (4.2), and differentiate implicitly with respect to Then the time rescaling
7+ 7(322% — 3) gives
T = kx—2(clz)+ )+ 2z,
{ 5= (322—3)(\+clz) — 2). (4.4)

The desingularization reverses the direction of time onrépelling partS™ of S. We find
folded singularities as equilibria of (4.4) that lie on tlédflines F.. The only equilibrium
onFyis (z,z) = (1, 2\ — 4 — k), with y = —2, and the only one o is (z,z) =

(=1, 2A + 4+ k), with y = 2. The associated Jacobian matrices are

Ai:(ﬁ(ﬂkk:m) (1)) (49

By classifying the folded singularities according to thigipe and stability, we obtain a
“singular” bifurcation diagram; we then use results fronct8m 3 to identify possible MMO
regions. Figure 16 shows this singular bifurcation diagiautk, \)-space, where we use the
notatione’s to indicate the type and stabilityh of the folded singularities; is f, n or s for
focus, node or saddle, ardis a, r or sa for attractor, repellor or saddle, respectively. The
different parameter regions are divided by three types onfesi Folded saddle-nodes of type
[l occur whendet(A4) = 0 < A = +(k + 2). The eigenvalues change from real to complex
conjugate along the parabolic curvegAr )? — 4 det(Ay) = k* + 24 (k F \) + 48 = 0.
The vertical line ttAL) = k = 0 is the locus where the real part of a complex eigenvalue
changes sign. The enlargement in panel (b) resolves therregar(k, \) = (—2,0).

MMOs are likely to exist in the regions where system (4.2) &déalded node, provided
the global return mechanism brings orbits back into the@ated funnel region. Recall from
Section 3.1 the construction of a candidate periodic drpthat consists of a segment 6t
ending at the folded node, followed by a fast fiber of the Igy@blem and a global return
mechanism. Figure 17(al) illustrates this constructiorafoandidate periodic orbit passing
throughn¢ , where we used = —10 and\ = —7; this is a computational example of the
sketch shown in Figure 8. Startingét , the candidaté’. jumps toS*~, which is followed
by a slow segment until'. reachesF'_. After another jumg’, returns inside the singular
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FIG. 16. The “singular” bifurcation diagram in the(k, A)-plane of the desingularized slow fl@4.4). Shown
are the folded saddle-node of type Il (straight lines), tiaasition from a folded node to a folded focus (parabolas),
and the curve indicating where the candidate trajectoryrfrthe folded node returns with = 0 (dashed curve,
obtained numerically), which is not shown in panel (b). Raggives a global view and panel (b) is an enlargement
of the region near the right intersection point of the two gdaolic curves. The types of folded equilibria in each
parameter region are indicated as follows = folded focus,n = folded node ands = folded saddle. The
subscripts indicate whether the equilibrium lies 8l or F_. The superscripts, » and sa stand for attractor,
repellor and saddle, respectively.

@77, /T,
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FiG. 17. The candidate periodic orblt. of the folded node of (4.2)with (e1,e2, A\, k) = (0,1, -7, —10)
returns at a distancé from the strong singular canarls. Panel (al) shows all df . and panel (a2) an enlargement
nearn$ to illustrate the definition 0. Panel (b) shows as a function of\, with all other parameters fixed. The
distanced only has meaning fof > 0 and for values of\ larger than its value at the folded saddle-node of type Il
at\ = —8.
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FiG. 18. Bifurcation diagram for equilibria of the full syste(d.2) with ey = 0.01. Shown are saddle-node
bifurcations (green, labeled SN) and Hopf bifurcationsuéyllabeled H). The saddle-node bifurcation curve has
a cusp point (labeled C) and meets the Hopf bifurcation cumvievo Bogdanov-Takens points (labeled BT). The
dashed curves are folded saddle-nodes of type Il (red, é&abeEN 11) that occur in the singular lim{@.4).

funnel, as shown in Figure 17(a2), and we measure the destanc the strong singular
canardy,. This distance depends on the parameters, for examplearies as a function of
A with & = —10 fixed in Figure 17(b). Note that < 0 means thal’. no longer returns to the
singular funnel; as long a% > 0 the candidatd’. gives rise to periodic MMOs as; > 0.
Hence, the curve in thgk, A)-plane along whicld = 0 marks the start of the MMO regime.
Figure 16(a) shows the locus &= 0 as a dashed curve; its symmetrical image corresponds
to candidate periodic orbits far® . The two (symmetric) parameter regions bounded by the
lines of folded saddle-nodes of type Il, whet§ changes ta¢ , and the curves whede= 0
are the regimes where MMOs are predicted to exist; note tieattirvesy = 0 run all the
way up to the folded saddle-nodes of type Il, which is not showFigure 16(b).

Koper identified a parameter region of “complex and mixeddemoscillations” fore > 0
by using continuation methods; see Figure 1 on page 75 ol [V22 can interpret his results
as perturbations of the MMO regimes we identified in the siagbifurcation diagram in
Figure 16(a). To this end we consider bifurcations of efuidi of (4.2) fore > 0; this
analysis was already carried out by Koper [122] for (4.1).e Hifurcation diagram in the
(k, A)-plane is shown in Figure 18 fa; = 0.01, with the saddle-node curves (green) labeled
SN the Hopf curves (blue) labeleld. Included are the curves of folded saddle-nodes of
type Il (dashed red) labele®@SN II; the curvesFSN Il already predict the “cross-shaped”
bifurcation diagram for the full system with > 0 sufficiently small [26]. The cross-shaped
bifurcation structure persists over a wide range=of We find the saddle-node and Hopf
curves as follows. The Jacobian matrbof (4.2) on the fast time scale has the characteristic
polynomialo® + ¢y 02 + ¢; 0 + ¢y with coefficients

co=3E1+2*~1), c1=¢e1(e1+92° ~k—9), co=¢e1(32> -3 —k),

wherez corresponds to an equilibirum, thatis, — (k + 3) z + XA = 0. Hence, a saddle-node
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FiG. 19. Bifurcation diagram in\ for the Koper mode{4.1) with (e2, k) = (1, —10). Panels (al) and (a2)
are fore; = 0.01 and panels (b1) and (b2) far, = 0.1 as used by Koper. Panels (al) and (b1) plot the period
T and panels (a2) and (b2) maxima faf| versus. A branch of periodic orbits (an “MMO” with signatura?)
emanates from the Hopf bifurcation H and coexists with is@&BMMOs with different signatures.

bifurcation occurs for

1\ 3/2
co=—det(Ad) =0 A ==+2 <1+3> ,

which has a cusp point & = —3 and does not depend en; the cusp point is labele@ in
Figure 18. The Hopf bifurcation is defined by — ¢; ¢ = 0, providede; > 0. To first order
ineq, we find

1
A= (2+k3k51+0(e§)),

which liesO(z1) close to the curves of folded saddle-nodes of type Il, as @rpe The
saddle-node and Hopf bifurcation curves coincide at twoddogv-Takens points (labeled
BT) defined byk = —% €1. The MMO regime fore; > 0 lies in the region withk < 0 and it
has a lower bound with respect kcalong a curve that is close tb. We discuss this in more
detail for fixedk = —10. Note that from now on we use the original equations (4.1i)tlia
does not alter the bifurcation diagrams of tiie\)-plane in Figures 16 and 18.

Koper [122] computed a numerical bifurcation diagram foefix = —10 ande; = 0.1
with A > 0 as the free parameter; he found isolated closed curves of Nkt@dic orbits.
We computed more detailed bifurcation diagrams, using #messystem (4.1) as Koper,
where we concentrate on the (symmetrically related) region 0 and usect; = 0.01 as
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well ase; = 0.1. The result is shown in Figure 19, where row (a) is for= 0.1 and
row (b) fore; = 0.01. The vertical axis in panels (al) and (b1l) is the pefioaf the periodic
orbits, while in panels (a2) and (b2) it is the maximum absolalue of ther-coordinate.

A family of stable periodic orbits emanates from the HoptibifationH, but it quickly loses
stability in a period-doubling bifurcatioRD. We abuse notation and label this famil{;
the period-doubled family is labele2f and note that it appears as a disconnected curve in
the (), T)-projection because the period doubled. THeorbit becomes stable again in a
second period-doubling bifurcation, which is quickly fmlled by a fold (not labeled) that
renders it unstable, until a second f@d, after which relaxation oscillations are persistent.
The MMOs reside on isolas that exist for the range\@bughly in between the two period-
doubling bifurcations. We used alternatingly light- andkdblue colors to highlight these
families; we found MMOs with signaturels’ with s ranging from 3 to 14 as indicated in
Figure 19.

The MMOs on the isolas in Figure 19 are generated by the faldel@ mechanism; we
refer to Section 5 for a more detailed discussion of MMOs arhssolas. Here, we focus on
the fact that MMOs with more complicated signatures can bedoas soon as the candidate
periodic orbit returns close to a maximal canard. Figuret2@s the stable MMO that exists
for A\ = —7; here, we used; = 0.1. Panel (a) shows a time series of theoordinate,
which identifies the signature of this MMO da$13; a projection onto théz, 3)-plane is
shown in panel (b). We computed the attracting and repedilogy manifoldsS? andS? ,
respectively. They are shown in Figure 20(c) along with ¢hmeaximal secondary canard
orbits &, &3 and&, that are also drawn in panel (b). The figure shows how both LA@Ss
funneled into the folded node region, practically 8f) and very close tg,. Figure 20(b)
illustrates that they are actually separatedddy on either “side” of¢,, which means that
the number of SAOs that follow for one of the LAOs is two, wHide the other it is three,
as dictated by;. Referring to Figure 7(a), a one-dimensional approxinmtbthe return
map will have branches corresponding to trajectories traktenincreasingly larger numbers
of SAOs as they pass through the folded node, and the trajestown in Figure 20(c) has
returns that alternate between the branches correspotaling and three SAOs.

We observe that the last of the three SAOs has a distinctigtaamplitude, which Fig-
ure 20 suggests is due to this oscillation following a caraard then executing a jump back
to S¢ . However, there is also an equilibriugnnearby. Fork = —10 a singular Hopf bi-
furcation occurs fol\ = Ay ~ —7.67. We found that the folded node in Figure 20 is at
(x,y,2) = (1, [\ = 2)/k, 2XA — 4 — E]/k) = (1,0.9,0.8) and the nearby equilibriunp at
(z,y,2) = (x4, 74, T4), Wherez, ~ 0.897 is a root ofz® — (k + 3) z + \.

34



2.15 0.95

- (@) 1213 (b) ——m e
ISWESY L3 ,q
1.15 Yy /
1213
0.15 0.65
-0.85
-1.85 0.35
0 4 8 t 12 0.65 0.775 z 0.9

0.75 0.95

Fic. 20. An MMO with signature1?13 (black) generated by a folded node singulartiy @f.1) for
(e1,e2,A, k) = (0.1,1,—7,—10). Panel (a) shows a time series of thecoordinate. Panel (b) is the projec-
tion onto the(z, y)-plane and includes nearby canard orbis, £3 and&4 and panel (c) shows this in phase space
together with the attracting and repelling slow manifolgty (red) andSZ, (blue), respectively.
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FiG. 21. An MMO near a singular Hopf bifurcation fof@.1) with (e1,e2, A, k) = (0.1,1, —7.52, —10).
Panel (a) shows the time series of thecoordinate. The bifurcation diagram in panel (b) illustes how close
the parameters are to a tangency bifurcation betw&gfi(¢) and SI (dashed cyan); the Hopf H (solid blue),
folded saddle-node of type Il FSN Il (dashed red), @and= 0 (dashed black) curves are shown as well; see
also Figure 16. The slow manifoldS? and S. shog@ in panel (c) guide the MMO toward the equilibrium
g ~ (0.951,0.951,0.951), after whichIV*(q) organizes the SAOs. The high compression and twistirg of

nearW*(q) is highlighted in panel (d).
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FiG. 22. A periodic MMO of(4.1)for (e1,e2, A, k) = (0.01, 1, —0.063, —2.1) that exhibits SAOs near the
maximum as well as the minimum of the LAO.

We find pronounced SAOs generated by a singular Hopf bifimeaft we decrease closer
to the value\ ;; note that we have to stay above the value dé6ér which there is a tangency
between the unstable manifold™(¢) of ¢ and the repelling slow manifold? ; see also
Section 3.2. Figure 21 shows the MMO of (4.1) for= —7.52. The time series of the-
coordinate shows SAOs that are quite different from the Si@3gure 20(a). Figure 21(b)
shows an enlarged bifurcation diagram in tke\)-plane with the parameter location of the
two MMOs for Figures 20 and 21 indicated by two black doté at —10. The Hopf curve
(solid blue) and the curve of folded saddle-nodes of typeldished red) are labelétiand
FSN I, respectively. The MMO region is bounded by the cufve- 0 (dashed black) and
the tangency betwediv*(¢q) andS?, (dashed cyan); in between the Hopf and this tangency
bifurcation the periodic orbits have small amplitudes alnel transition to MMOs occurs
O(e) away from the Hopf curve. The dot corresponding to Figurei@4 Very close to the
tangency curve, while the dot corresponding to Figure 20well inside the MMO region.
Figure 21(c) shows geometrically how the SAOs are organizkd red and blue surfaces are
the attracting and repelling slow manifolds, andS? , respectively. During the epoch of
SAOs, the MMO periodic obit lies almost ¢#f, and it cannot pass througf , which twists
very tightly and forces a decrease in the amplitudes of th@SAhis first part of the SAOs
is still reminiscent of the passage through a folded nodéciwdies at(1, [A — 2]/k, [2X\ —

4 — k|/k) = (1,0.952,0.904), and their amplitudes decrease with SinceS! spirals
around the one-dimensional stable manifold;ofhe MMO periodic orbit comes very close
to ¢ = (x4, 4, %,), With z, &~ 0.951. The SAOs that follow are organized By (¢) and
their amplitudes are increasing to relatively large valefore the LAO.

In summary, if we fixk in Figure 21(b) and increase we observe the following typical
sequence of events near a singular Hopf bifurcation of aililequm ¢. For small enough
A there are no MMOs and the attractor is an equilibrium. Thigildgium crosses a fold
of the critical manifold afFFSN I, but it remains stable until a supercritical (singular) Hop
bifurcation at distancé®(e;) away gives rise to small oscillations. The transition to MMO
occurs after a tangency betwedn“(q) and ST ; for A-values just past this tangency the
MMOs have many SAOs that all lie nelir*(q). As X increases further, the MMOs exhibit
SAOs organized by the folded node. Finally, a crossing oftthees = 0 corresponds to a
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transition to relaxation oscillations.

To end this case study, we report the existence of a diffaygrat of MMO not found
by Koper; it is shown in Figure 22. The MMO has SAOs both nearrttaximum and the
minimum of the LAO. Hence, this MMO passes near folded node®n both fold curves.
The parameter region where this occurs is quite small, gdtttsadifficult to locate such an
MMO using simulation; it is the region in Figure 16 ndar= —2 that can only be seen in
the enlargement in panel (b). We found the MMO by selectingupatersc = —2.1 and
A = —0.063 in this region and choosg = 0.01 rather small; a more detailed study of the
range of parameters for which such MMOs with two SAO epochsaies future work.

5. MMOs in a reduced Hodgkin—Huxley system.As the next case study we consider
a three-dimensional reduced version of the famous Hodgkimley equations [102] that
describe the generation of action potentials in the squadtgaxon; see [115, 196] for the
derivation and also [43], where the same example was used.rdduced model only de-
scribes the dynamics for voltag®’), the activation of the potassium channei3 &nd the
inactivation of the sodium channels)( the activation of the sodium channela)is very
fast and it reaches its equilibrum state= m.. (V') (almost) instantaneously which can be
justified mathematically by a center-manifold reductioBglL The evolution of the gates
andh is considered slow while the evolution of the voltages considered fast. To justify
this time-scale separation, we nondimensionalize the Kodgluxley equations by intro-
ducing a dimensionless voltage variable- V/k, and a dimensionless time= ¢/k; where
k, = 100 mV is a reference voltage scale alhd= 1 ms is a fast reference time scale; this
gives

ev = f(v,h,n) = IT—m3 (v)h(v— Ena)
—gent (v — Ex) — g (v — Ev),
. ; ki (heo(v) —h) (5.1)
ho= avh) oo th(v)

with dimensionless parametef$, = E./ky, §o = gu/9Na, With x € {m, n, h}, [ =
I/(kygna) ande = C/(kigna) =: Tv/ki. The original Hodgkin—Huxley parameter values
are given in Table 5.1. Thus,= 35 ~ 0.01 < 1 and system (5.1) represents a singularly
perturbed system with as a fast variable angh, ») as slow variables. The functions, (v)
and¢,(v), with x € {m, n, h}, describe the (dimensionless) steady-state values amd tim
constants of the gating variables, respectively; they mendoy

1
=)= 5 0=
with
am(v) = 176)(216(":”(:?21:118)/10), Bm(v) = 4dexp(—(ky,v+ 65)/18),
an(v) = 0.07exp(—(kyv + 65)/20), Bn(v) e (= (hos T35 710)
(V) = Tt Ba(v) = 0.125exp(—(k,v + 65)/80).

The orginal Hodgkin—Huxley equations with scaling paramet, = 7, = 7, = 1
shows no MMOs [102], but if;, > 7, > 1 or 7, > 7, > 1 are beyond certain threshold
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gna | gk | 9 [ Bna| Bx | BL | m | m | C

120.0 [ 36.0 [ 0.3 [ 50.0 | =77.0 | =54.4 [ 1.0 [ 1.0 | 1.0
TABLE 5.1
Original parameter values of the Hodgkin—Huxley equati(®4).

values then MMOs are observed [43, 196, 197]. Here, we focua epecific case with
7, = 6.0, 7, = 1.0andC = 1.2 (so thate: = 0.01). We use the applied curreit(in units
of NA/ch) of the original Hodgkin—Huxley equations, that is, thecaded! in (5.1), as the
only free parameter. Furthermore, in order to facilitatenparison with other studies, we
represent output in terms of the non-rescaled volidage 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generatedtdube presence of a
(subcritical) singular Hopf bifurcation dt= I ~ 8.359 and a folded node in the singular
limit e = 0. The critical manifold of (5.1) is defined by,

I —mo(v)®h(v— Ena) — g1 (v — Ey)
gr (v — E) ’

which is a cubic-shaped surfaée= S“~UF_US"UF, US*™ for physiologically relevant
values ofI. The outer sheet§®= are stable, the middle she®t is unstable, and’,. denote
fold curves [196]. The desingularized reduced system anrtianifold is given by

{fz = (&ENa + () e
h = —(%f) g1-

A phase-plane analysis of the desingularized reduced flothenphysiologically relevant
range shows that there exists a folded node singularity’orior I > Ipsn ~ 4.83. Fur-
thermore, it can be shown that the global-return mechanimjegqs into the funnel region
for I < I, =~ 15.6; see [196, 197]. Hence, the folded node theory predictsxtstemce of
stable MMOs for a range df-values that converges fig-sy < I < I,. in the singular limit
ase — 0.

Figure 23(a) shows the folded node singularity for 12, where it lies approximately
at (v, h,n) = (—0.593,0.298,0.407), in projection onto th€n, V')-plane. The two black
curves are the strong singular cangtdand the primary weak canarg, that pass through
the folded node. The other two curves are maximal secondargrds(; and¢g that were
found as intersections of extended slow manifolds compuoézdt the folded node; see also
Section 8 and [43, Figure 6]. Their projections onto theV")-plane, which illustrate the
oscillating nature of; and¢g, are shown in Figure 23(b). Notice that the final oscillasion
of the primary weak canargl,, in Figure 23(a) show the distinct characteristics of saddle
focus-induced SAOs. Indeed, a saddle-focus equilibigum (—0.589,0.379,0.414) exists
relatively close to the folded node, due to the singular Hoififrcation at/g ~ 8.359.
Decreasing from I = 12 toward/ = Iy causeg to move closer to the folded node and the
mix of folded node induced SAOs and saddle-focus inducedsSAidbe more pronounced;
compare with Figure 21(c).

The equilibriumg for I = 12 persists whend is varied. A partial bifurcation diagram is
shown in Figure 24(a), where we plot the maximumiofersus/. Similar to the analysis
in [43], a unique equilibrium exists for all and it is stable fod < Iz and, approximately,
I > 270.772. The (singular) Hopf bifurcation (labelefl) at 7 gives rise to a family of
saddle-type periodic orbits. This family of periodic osbitndergoes three fold bifurcations
(SL)atl ~ 6.839, I =~ 27.417 andl = Ig; ~ 14.860, after which both non-trivial Floquet
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FiG. 23. Maximal secondary canard orbitg and & of the three-dimensional reduced Hodgkin—Huxley
equations(5.1) with 7, = 6.0, 7, = 1.0, C = 1.2 and I = 12. Panel (a) shows the two canard orbits in
projection onto thgn, V')-plane; also shown are the strong singular cangrgdand the weak primary canargl,, .
The projection of¢s and & onto the(h, V')-plane in panel (b) shows that they make five and six osaiiati
respectively.
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FIG. 24. MMO periodic orbits of the three-dimensional reduced Hddgkluxley equation§s.1) with 7, =
6.0, 7, = 1.0 andC = 1.2. Panel (a) shows a bifurcation diagram where the maxiiavalue is plotted
versus the applied currert Isolas of MMO periodic orbits exist over a range bbounded by a period-doubling
bifurcation PD and a saddle-node of limit cycle bifurcati@L. The isolas are colored in alternating light and
dark blue. Panel (b) shows an enlargement near the Hopfdafion. All isolas shown have a fold bifurcation for
Isy, =~ 8.087. The periodic orbifl* shown in panel (c) is the stable MMO fér= 12; panel (d) shows" when it
has a maximal’-value of—20 mV.
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multipliers are less than 1 in modulus and the associatétesperiodic orbits correspond to
tonic spiking. Figure 24(a) shows that the fifst is quickly followed by a period-doubling
bifurcation (PD) at] ~ 7.651, where one of the Floquet multipliers, which are both urstab
after this firstS L, passes through 1. Hence, the periodic orbits aftétD are non-orientable
and of saddle type. Note that a secdPd (not shown in Figure 24(a)) must take place before
the secondb L.

MMOs exist as isolated families of periodic orbits for a raraf I; Figure 24(a) shows
eleven of these isolas colored in alternating light and ddde. All periodic orbits on a
single isola have the same number of oscillations. Eacl isohtains a short plateau with
large maximal nearV = 40 mV where the associated MMOs are stable and have signatures
1%. For our specific choice = 0.01, we found that the stable MMO interval appears to be
bounded byl'y on the left and byls, on the right, that is$.359 < I < 14.860. Recall that
the theory based on the singular limitas- 0 predicts the existence of stable MMO periodic
orbits with signature$® for 4.83 ~ Ipsy < I < I, = 15.6; the match is surprisingly good,
even thouglz is relatively large. A9 | Iy, the numbes in the stablel® MMO signatures
approaches infinity, since a homoclinic orbit through thepHsingularity is formed; see
also [43]. Furthermore, there exist stable MMO signaturiéls more complicated signatures
1%11%2...; see [197]. The MMO periodic orbits go through several li&tions along the
isolas (mostly period-doubling and/or saddle-node oftlieytle bifurcations); compare also
Figure 19 for the Koper model in Section 4. The maxivialalue indicates the amplitude of
the largest of the oscillations of the respective MMO pddantbit. Note the folded structure
of the isolas forV = Vg, ~ —20 mV which is approximately the repolarization threshold
value for action potentials. This value also correspondised -value of the upper fold curve
F,, at which a trajectory jumps back. For MMOs on a plateau, #h@4 correspond to a full
action potential, while the SAOs that follow are subthreshold oscillations.

Figure 24(b) shows an enlargement of how the isolas of MM@gar orbits accumulate
near the Hopf bifurcation, which is the region where theorgdicts a signaturé®, that
is, an MMO with one large excursions ardSAOs. This is organised by how the global-
return mechanism projects onto the critical maniflds/ varies. If the return projects onto
a secondary canard then part of the periodic orbit folloves gbcondary canards onto the
unstable branch, . of the slow manifold. However, only canard periodic orbliatireach the
region of the upper fold curvé’; are maximal secondary canards. Hence, the corresponding
family of secondary canards can be split into two groups: alktlse secondary canards with
maximumV < Vg, jump-backcanards and those with maximuvh > Vg, jump-away
canards. This is an important distinction in this applicatibecause the jump-away canards
will create action potentials, the jump-back canards wli. n

We illustrate the canards along one of the isolas in Figufga)2and (b). The stable
MMO periodic orbitI" that exists on the plateau fdr = 12 is shown in Figure 24(c); its
signature sl and it lies on the isola that corresponds to periodic orbits @total of seven
oscillations. Note that the large excursionlois above threshold. The six SAOsbfare due
to the fact that the global return lands on the rotationalsdmunded by the maximal sec-
ondary canardg; andg for I = 12 (not shown); compare Figures 23(b). When the periodic
orbit I" is continued in the direction of increasidgthe maximall/-value decreases and the
LAO changes from an action potential to a sub-thresholdllation. Figure 24(d) show§
(which is now unstable) when its maximiéltvalue is approximately-20 mV. Observe that
T" still has a total of seven oscillations, but now two of themeha fast segment. These fast
segments are jump-back canards. More precisely, the pedduit I" consists of a segment of
a jump-back canard of thig canard family that connects to a segment of a jump-back danar
of the strong canard family, which in turn connects to therfer segment, hence, closing the
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FIG. 25. Continuation of a family of periodic orbits that consist eftoscillations. The continuation starts and
ends at/l = 12 with a fold at/ ~ 8.087. Panel (a) shows a three-dimensional “waterfall diagramswalization
of the time series df” for 90 computed periodic orbits along this part of the isdflag boldface periodic orbit lies
at the fold point. The orbits in blue correspond to the partsofia in between the fold point and thevalue that
corresponds to the Hopf bifurcation, that &y ~ 8.359. Panel (b) shows the maxim&l-value along the branch
in the (I, V')-plane, where the arrows indicate the direction of the cmmdition. Panel (c) shows the periodic orbit
at the fold together with a coexisting small periodic orlitgrojection onto then, v)-plane.

loop. One could classify in Figure 24(d) as an MMO with signatug, because only five
of its oscillations have really small amplitude due to thegzaye near the folded node, while
there are two clearly distinguishable larger oscillatianth fast segments due to jump-back
canards. However, none of these larger canard oscillabbisare full action potentials,
meaning that all oscillations are classified as SAOs in thjdieation context.

Figure 25 illustrates the characteristics of the periodhute along the lower parts of
the isolas in Figure 24(a), where they are very close to thadir of saddle periodic orbits
bifurcating from the Hopf bifurcation. More specificallyjgbre 25(a) shows a “waterfall
diagram” representation of the time series of 90 periodlitsralong the lower part, for
1 < 12, of the isola along which one finds a total of ten oscillatioRisis part of the branch is
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TABLE 6.1
Parameter values used in the four-dimensional Olsen m@dg)

]Cl ]{?2 ]Cg k4 k5 k6 k7 k_7 k’g «
0.28 | 250 | 0.035 | 20 | 535 | 0 | 0.8 | 0.1 | 0.825 | 1

shown in Figure 25(b). The fold point for this isola islat Is;, ~ 8.087, and the associated
periodic orbit is drawn in boldface in Figure 25(a). The pdit orbits on the part of the
branch forlg;, < I < Iy are highlighted in blue. The periodic orbits along this pdrthe
isola are quite different from the MMOs one finds near thegalak of the isolas; Namely,
they consist of a mix of SAOs and jump-back canards, ten al.tdigure 25(c) shows the
projection of the periodic orbit at the fold onto the, V')-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating fromtopf bifurcation. This figure
suggests that the periodic orbit at the fold is approachitgraoclinic cycle of the small
periodic orbit.

6. MMOs in Olsen’s four-dimensional model of the PO reaction.Many applications
do not lead to models that have a clear split into slow andtfas scales. Often some
assumptions to that extent can be made, but most variablebenslow in certain regions
of phase space and fast in others. The following case studtrates how the geometrical
ideas from slow-fast systems can be used in such a contextstWilg a four-dimensional
model of the peroxidase-oxidase (PO) biochemical rea¢tiah was introduced by Olsen
and collaborators [37, 172]; see also [42], where this saxaenple was used. The Olsen
model describes dynamics of the concentrations of two satest(O, and N AD H) and two
free radicals, denoted, B, X andY’, respectively; it is given by the differential equations

A" = —k3ABY +ky — k_7A,

B’ = a(—ksABY — kyBX + ks), 61
X' = ki BX — 2k X2+ 3k3ABY — ks X + kg, (6.1)
Y’ = —k3ABY + 2k X? — ksY.

Note thatw is an artificial time-scale parameter that we introducedttier purpose of this
case studyp = 1in [37, 172]. The other parameters are reaction rates anchasectheir
values as given in Table 6.1, such that the periodic orhétsekist for these parameter values
are representative for the Olsen model (6.1). We focus aulysdn a stable MMO periodic
orbit, denoted™; its time series of the variablé is shown in Figure 26(b). We observe that
I" has signaturé®, and we estimate thatis aboutl5. Below, we show that the SAOs of
this example occur during passage through a dynamic Hopfdzfion, and we analyze the
global return mechanism of this trajectory.

6.1. Bifurcations of the fast subsystem.There is no clear split between the different
time scales in the Olsen model (6.1), but it is known tBa¢volves on a slower time scale
than the other variables [153]. Hence, it makes sense tadenthe fast subsystem obtained
by settinga = 0, that is, B’ = 0 and B acts as a parameter in (6.1). The bifurcation
diagram is shown in projection onto thel, B)-plane in Figure 26(a), which is invariant
becauseis = 0; see Table (6.1). There are two branches of equilibria thtgrsect at a
transcritical bifurcatiorl” for B = k4/k1 ~ 71.426; solid lines indicate stable and dashed
lines unstable equilibria. The equilibria that are colobéack in Figure 26(a) are physically
relevant because they have non-negative values ahdY’; for grey equilibria, on the other
hand, X or Y is negative. One branch is the black horizontal linedat 8; it lies in the
(4, B)-plane (whereX = Y = 0), which is invariant sincés = 0. Equilibria along this
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FIG. 26. The stable MMO periodic orbif' of the Olsen modéb.1)with parameters as in Table 6.1. Panel (a)
showsI" (blue) projected onto theA, B)-plane and superimposed on the bifurcation diagrangéf) with o = 0;
solid (dashed) black and grey curves are stable (unstalga)libria, where the grey color indicates thaf or Y
are negative, andd N, H and T are saddle-node, Hopf and transcritical bifurcations, gestively. The family
T of periodic orbits that emanateH is represented by its maxima and minimadn(green curve); the lin&-
(cyan) indicates where thd, B)-plane changes from attracting to repelling. Panel (b) shake time series of the
variable A alongT". The inset panel shows a blow-up of the region where SAOsgmdeslow decay.

branch are stable foB < k4/k;. A second branch intersects the horizontal branch and
the (A, B)-plane at the poinf’; only the black part of this second branch with positi¥e
andY is physically relevant; it consists ne@rof saddles with one unstable and two stable
real eigenvalues. Two further bifurcations along this ptglty relevant branch change the
stability of the equilibria; there is a saddle-node bifti@ma SN at B = Bgy ~ 35.144
and a subcritical Hopf bifurcatiod/ at B = By ~ 57.949. The emanating branch of
saddle periodic orbits (green) is labelEdfor which only minimal and maximal values of
A are shown. The hyperplang- = {(A, B, X,Y)|B = k4/k;} marks where the linear
contraction normal to thed, B)-plane is zero; note thdt € X+. Overlaid on this bifurcation
diagram is the MMO periodic orbif of (6.1) (witha = 1) and we can now see halvis
composed of a segment of SAOs, generated by passage thrayghamic Hopf bifurcation,
and a global return: starting from the minimum of the trajectory spirals in and out of a
vortex structure due to the presence of the family of equdibf the fast subsystem with a
pair of complex conjugate eigenvalues that cross the inaagizxis. The presence of the Hopf
bifurcation in the fast subsystem explains the observed dkray and increase in amplitude
of the SAOs of the attractdr of the full system. The reinjection back to a neighborhood
of the attracting branch is mediated by an increasd invhich triggers a slow increase in
B, as the trajectory closely follows the invariaf, B)-plane toward the curve of stable
equilibria with A = 8. As soon asB > k4/ki, that is, the trajectory crosses’, the
(4, B)-plane is unstable and the trajectory begins to move away fto Finally, the sharp
decay inA appears to be a fast segment that brings the trajectory bablk entrance of the
dynamic Hopf bifurcation; compare also with the time senéshe A-variable alongl’ in
Figure 26(b). The rapid decrease in amplitude of the SAOs imdication thatl” is in an
intermediate regime between the tourbillion and delayegfiddurcations, but we label it as

a tourbillion.

6.2. Slow manifolds of the Olsen modelThe SAOs ofl” in Figure 26 terminate abruptly
via a mechanism that can be visualized by computing slow folalsi The shape of these
manifolds and the geometry of their interactions in the agisystem allows us to unravel
the organisation of MMOs in the Olsen model (6.1). Consitlerdurve of saddle equilibria
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Fic. 27. The repelling slow manifoldy (blue) of the fast subsystem of the Olsen md@dl) (o« = 0),
where X was eliminated via the QSS.2). The manifoldS7; was computed as the family of one-dimensional
stable manifolddV 2 (one side only) of saddle equilibria (dashed black curve)® < B < 63. The branch
of equilibria (dashed/solid black curve) in the vicinitytbe Hopf bifurcation point (dot) is also shown, along with
several unstable periodic orbits (green curves) born a thopf bifurcation; the periodic orbits are almost the same
as those in Figure 26 for the fast subsystem. Panel (b) shiyysand the corresponding unstable periodic orﬁg’\b
for B = 60 in the (A, Y)-plane. Note that the viewpoint in both panels was choseh that A increases toward
the left; this is also the case in subsequent three-dimeasfgures.

for B < k4/k; in Figure 26(a) between the points§V and7. Each equilibrium has one
positive and two negative eigenvalues and the family of @ased two-dimensional stable
manifolds acts as a limiting (three-dimensional) repgligiow manifold that organizes the
termination of the SAOs. Since this termination still taltasce extremely close to the in-
variant(A4, B)-plane, we may assume thatis a fast variable in this region. Therefore, we
may reduce the dimension by way of a quasi steady-state assumiQSSA) [72], where we
assume thak has reached its steady-state value

k1B — ks + \/(k1B — k1)? + 8k2(3ks ABY + k)
B 4ks

Using the QSSA, we approximate the fast subsystem (6.1) avith 0 as aB-dependent
family of two-dimensional vector fields in thed, Y')-plane, and the repelling slow manifold
is now approximated by a familg; of one-dimensional stable manifolds. Note that the
QSSA (6.2) preserves the equilibria of the fast subsystefhttagir stability properties change
only in the sense that essentially one contracting diredfior B < k4/k) is removed. The
equilibria on the branch bounded N andT are still saddles, but now with only one
stable eigenvalue. The equilibria on the branch on the atlderof SN are repelling for the
planar system if3 lies in betweenBgx and By, and attracting pasBz. We computedsy
with AUTO [50] by defining a suitable two-point boundary valproblem; see Section 8.2.
Figure 27 illustrates how}, rolls up (in backward time) around the lower equilibriumtch
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FIG. 28. The attracting slow manifol@3 (red) of the full Olsen modgb.1) (« = 1), computed from near the
equilibria for A = 8 and B > ka4 /k1 up to the sectioits3 = {B = 53}. The black solid/dashed curves are the
physically relevant equilibria of the fast subsystem= 0).

1 I I | | I I I | |
300 320 340 360 380 400 420 440 460 480 500
t

FIG. 29. (a) Approximations of the attracting and repelling slow rifalds of the Olsen mod¢6.1). Panel (a)
shows the surfacesy (blue) andSy (red) projected intd A, B, Y')-space between the sectioniss andXe3 (green
planes). Also shown are three orbijg in orange,n2 in magenta ands in cyan; they lie in the intersection &f5
and Sj. Intersections o5 and Si; with 53 are shown in panel (b); the intersectionsigf, 2 andns with Y53
are labelled.

for Bsy < B < By and around the family of unstable periodic orbits > By until the
homoclinic bifurcation forB ~ 66.480 < k4/k;; to emphasize th&-dependent nature, we
show this planar dynamics for the fixed valBe= 60 in panel (b).

The repelling slow manifoldy; is only an approximation and it is not an invariant ob-
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ject for the full system (6.1). However, it provides an iration of how an MMO trajectory
is trapped by an actual repelling slow manifold as it passesugh the tourbillion and in-
dicates how the trajectory flows toward the curve of saddlgliega. By combining this

approximation of a repelling slow manifold with an approzition S5 of the attracting slow
manifold that guides trajectories back to the entrance etahrbillion, we can visualize the
mechanism that organizes the SAOs.

To find S%, we consider the curvé of saddle equilibria withA = 8 andB > k4/k;
(pastT); see Figure 26(a). These equilibria have one-dimensionsfable manifolds in
(A, X, Y)-space, that s, in the full fast subsystem without the QS%2)( TheB-dependent
family W* (L) of unstable manifolds is a two-dimensional surface thatesaklarge excur-
sion before spiraling toward the attracting equilibriurarch that lies just above the invariant
(A, B)-plane. We define the attracting slow manifdifl in this setting as the equivalent of
W*(L) when B is not fixed but allowed to vary. In particular, with this défion S% en-
ters a neighborhood aff and interacts with the repelling slow manifof} that only exists
for B < k4/k1. We compute the two-dimensional manifa with AuTto [50] by using a
boundary value problem setup as in Section 8; specificalyraquire that one end point of
the computed orbit segments lies along a llifevery close to the curvé of equilibria and
in the linear approximation té/’*(L); see [42] for more details on how this computation can
be performed. Figure 28 illustrates hayg provides a global return mechanism from near
L, via a large excursion and then guides trajectories throlghadaurbillion.

Figure 29 illustrates how the interaction 8§ and S, determines the behavior in the
tourbillion regime. The two surfaces are shown B, A, Y')-space in panel (a). Recall that
S§ is a two-dimensional surface (B, A, X, Y')-space, and shown is its projection. The man-
ifold Sg, on the other hand, was computed by assuming the QSSA (ehijhws due to an
additional strongly attracting direction. Henc, is a two-dimensional surface {3, A, Y)-
space that corresponds to a three-dimensional surfa@®,id, X, Y')-space. Therefore, the
intersections of% and.S; with the planeXs; = {B = 53} are isolated points, and they are
shown in Figure 29(b); note thaf; N Xs3 = W3, while the computation a3 N Y53 is more
involved. The intersection points of these two curves ddfiectories that resemble canard
orbits near a folded node, because they spiral in the tdiarbilegion, making an increasing
number of turns. The first three intersection points areléabim Figure 29(b) and their cor-
responding trajectorieg, . andns are shown in Figure 29(a). These trajectorjes), and
73 are contained irb3, but only their intersection points withss lie on Sg. Indeed,Sy; is
not an actual invariant manfiold of (6.1) and only serves aspgmmoximation of the repelling
slow manifold. Nevertheles$; andS; give a qualitative illustration of the nature of SAOs
generated by slow passage through the tourbillion. Inqalr, the intersection curves §f;
andSg with X535 provide an approximate location of the sectors of osailaiin this region
of phase space.

7. The Showalter—-Noyes—Bar-Eli model of MMOs in the BZ Reactin. The Showalter—
Noyes—Bar-Eli (SNB) model [205] is one of many kinetic mad#iat have been proposed
for the Belousov-Zhabotinskii (BZ) reaction. It is a sewdimensional vector fields derived
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from a system of reactions

A+Y =X+ P
X+Y =2P
A+ X =2
C+W=X+2Z
2X =2 A+ P
Z —gY +C

that satisfy the law of mass-action, resulting in the equneti

A = ko(Ao—A) — kiAY + k1 PX — kyAX + k_sW?2 + ks X2 — k_s AP,

C = ko(Co—C)—k4CW+k,4XZ+k62,

P = —koP +kAY +2ko XY —2k_oP? + ks X? —k_5AP — k_, PX,

W' = —koW +2ksAX — Qk'_3W2 — ksCW + k_4 X7,

X' = kX 4 kAY — k  PX — ko XY + k_oP? — ks AX + k_g W2
hyCOW — k4 X7 — 2k X2 + 2k 5 AP,

Y = ]fo(Yb 7Y) *]flAY+k_1PX7]€2XY+]€_2P2+9]€6Z,

7' = —koZ+kiCW —k_4yXZ — keZ,

(7.1)
where we use the same letter to identify a chemical spec@#sooncentration. Note that
C'+ 7' = ko(Cy — C — Z), so the hyperplan€' + Z = () is invariant and attracting.
We reduce (7.1) to a six-dimensional vector field on this hgiame by setting” = Cy — Z
and eliminating the equation f@r’. The model is “realistic” in the sense that each variable
is associated with a definite chemical species. The reaciies are based upon experimen-
tal measurements. As is typical with chemical reactions,cibncentrations of intermediate
species differ from each other by many orders of magnituds/eNheless, some intermedi-
ate species that have very low concentrations are stillmyclly important. The variabl&
represents concentration of bromide which is often medsiarexperiments to monitor the
state of the system. The variabldn the model represents the concentration of bromate. This
chemical has much larger concentrations than the otherespdmut the chemically relevant
guantity is its variation, which is of comparable order te tfariations of other concentra-
tions. See Showalter et al. [205] for more details about teargstry. In previous studies of
this model, Barkley [16] was unable to clearly identify a dymical explanation of the MMOs
it exhibits.

We study this system for a single set of parameters where &tenwNoyes and Bar-Eli
observed a mixed mode oscillation, specifically

ki = 0.084 Ms)™', k= 1x10* (Ms) ™,

ky = 4x108 (Ms)™", k., = 5x107° (Ms) ™",

ks = 2x103 Ms)™',  k_s = 2x107 (Ms)

ks = 1.3x10° (Ms)™",  k_y = 24x107 (Ms) ™", 7.2)
ks = 4.0x107 (Ms)™", k.5 = 4.0x10"'" (Ms) ', '
ke = 0.65 Ms)™, kg = 797x1073 s71

Ay = 0.14 M, Cy = 125x107% M

Yo = 151x10°6 M g = 0.462,

Note that the system (7.1) and the parameters in (7.2) hawergdiional units; throughout,
concentrations are measured in molar (M) and time in sec@)ds
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FiG. 30. Time series of an MMO periodic orbit fdi7.1), with parameters given in 7.2. The time series of
each variable is scaled to the interval [0,1] and the trajagtis plotted over one period. Panel (a) shows the slow
variablesA (black) andP (red), and panel (b) the fast variablé® (blue), X (orange),Y” (magenta), andZ (grey).

Figure 30 shows time series of the MMO periodic orbit of (Adth parameters given
by (7.2), plotted over one peridl ~ 209s. In the time series, each variable is scaled by
an affine transformation so that it varies on the intef9al]. To relate back to the dynamics
of (7.2) the minimum and maximum values of each variablergoaescaling are listed in
Table 7.1. Figure 30 displays the characteristics of an MNIkere are small oscillations
that occur while the relative concentration¥fis small and the relative concentration of
is large. Note from Table 7.1 that these concentrations arging by over two orders of
magnitude. The periodic orbit makes two circuits and hasatigrel*1°.

[ A . r [ 0w | X | Y | Z |
black red blue orange magenta grey
1.39856 x 1071 [ 1.83 x 10°% [ 145 x 1079 [ 42x 1077 | 239 x 10°° | 3.89 x 10~8

1.39907 x 1071 [ 2.80 x 10°% | 1.38 x 107 % | 1.5 x 1077 [ 2.28 x 107° [ 6.41 x 10
TABLE 7.1
Minimum and maximum ranges of variation of each coordinateigure 30(a).

There is no explicit slow-fast structure in the equationg).7We infer that A, P) vary
slowly relative to(W, X, Y, Z) in an ad-hoc manner from Figure 30 by making two obser-
vations. First, the variablgsd, P) show a monotone decrease and increase during the times
that the variablesW, X, Y, Z) undergo small oscillations. Second, P) do not undergo
rapid changes at the beginning or end of the small osciflates(1V, X,Y, Z) do. There-
fore, to investigate the mechanisms producing the smallitudp oscillations in this MMO,
we identify the system as a slow-fast system with slow véembA, P) and fast variables
(W, X,Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) pojbet MMO
periodic orbitl" onto the( P, Y, Z)-plane. Notice the region of SAOs, which is visited twice.
Panel (b) show$ projected onto th¢ A, P)-plane of slow variables. We observe from this
projection thafl” lies close to the hyperplarid + P = 24, (grey line), which means that
the change ofA and P along the MMO periodic orbit is of the same order.

Figure 31(a) suggests that the SAOs of the MMO periodic drhite due to a tourbillion.

To ascertain this, we compute the critical manifold neawibmity of the SAOs with contin-
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FiG. 31. (a) A three dimensional plot of the trajectory onto the spsgganned by the coordinaté®, Y, Z). A
curve along the critical manifold is plotted as a grey linedathe black dot marks the location of a Hopf bifurcation
in the fast subsystem. (b) The MMO is projected onto the coatesA and P. The grey line is defined ®A+ P =
2Ao and the ranges oft and P are [0.13985, 0.13991] and [0.00018, 0.0003].
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FIG. 32. Panel (a) shows the curve of Hopf bifurcations (blue) anditiedefined b2 A + P = 2A¢ (grey)
in the (A, P)-plane. Panel (b) shows the SAOs projected onto the thmeemsional space spanned by the center
manifold of the Hopf bifurcation and the direction of thedif2A + P = 2A¢} in the (A, P) plane. The MMO
periodic orbitT" visits this region twice and each time spirals around theteemanifold of the Hopf bifurcation
(grey); the Hopf bifurcation point of the layer system itsekthe black dot.

uation methods using the program Matcont [44]. Figure 38(@ws the the curve of Hopf
bifurcations in the fast subsystem in thé, P)- plane of the slow variables together with the
curve2A + P = 2A,. The small portion of the Hopf curve plotted in Figure 32@aimost
horizontal, so the two curves cross transversally. Matetstd calculates the first Lyapunov
coefficient of the Hopf bifurcations along this part of theich, showing that they are all
subcritical. To demonstrate further that the tourbilli@saciated with the Hopf bifurcation
is indeed the basis for SAOs, we projétbnto the three-dimensional space spanned by the
two dimensional center manifold of the Hopf bifurcationletspace of fast variables and the
direction defined b A + P = 2A,. The projection of the center manifold is plotted as a
grey curve and the Hopf point of the layer equation is thelbtimt. The two parts of that
correspond to SAOs surround the center manifold and havemairmamplitudes close to the
Hopf point. This is clear evidence that the MMO of (7.1) hasarbillion with SAOs that
are generated by the passage through a dynamic Hopf bifomcaimilar to the one observed
for the Olsen model in Section 6. This example illustrates tiee methods described in this
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paper can be applied effectively to a system of higher dimoerthan just three or four.

8. Numerical methods for slow-fast systemsThis section discusses numerical meth-
ods that we used to compute the two-dimensional slow matsfehown in many of the
figures, as well as stable and unstable manifolds of equitibpoints. The slow manifold
computations choose an end point of each orbit segment arritfeal manifold away from
a fold; this approximation yields errors that ac) but decay quickly as one moves away
from the end point. For stable or unstable manifolds of égud, orbit segments are chosen
to lie in the linear eigenspace associated with the stahlestable eigenvalues, respectively.
The computational error associated with this approxinmediso decays quickly as one moves
away from the endpoint; see [41, 130] for analysis of thegg@pmation errors .

A simple and effective method for computing invariant matié as families of orbit
segments is to use initial value solvers as the basic afgontith initial conditions chosen
on a mesh of points transverse to the flow in the invariant folghiwe call this the “sweep-
ing” method. Despite its simplicity, this sweeping methailisfto produce satisfactory results
in some cases. In particular, strong convergence or divergef trajectories toward one an-
other makes the choice of the initial mesh problematic amdpraduce very non-uniform
“coverage” of the desired manifold; see [59, 60]. In mub#pime-scale systems, the fast ex-
ponential instability of Fenichel manifolds that are ndtatting makes initial value solvers
incapable of tracking these manifolds by forward integmatiThese issues prompt the use of
boundary value methods combined with continuation as @mrelte strategy for computing
invariant manifolds [131, 132] . We have used both strategiethis paper. This section
presents more details of the techniques used to compuéetaity and repelling slow mani-
folds of systems with one fast and two slow variables, as agthe continuation of canard
orbits when a parameter is varied.

8.1. Sweeping invariant manifolds. The Fenichel manifolds of systems with a single
fast variable are either attracting or repelling. As a re$oitward trajectories with initial con-
ditions on the critical manifold will converge quickly to attracting Fenichel manifold and
backward trajectories with initial conditions on the a#i manifold will converge quickly
to a repelling Fenichel manifold. Thus, one way to compute-tiimensional attracting and
repelling Fenichel manifolds of a three-dimensional flowoigpply an initial value solver in
the appropriate time direction to a mesh of initial condif@long a curve of the critical man-
ifold transverse to the slow flow. We used this sweeping nietb@omputeS? in Figure 11;
see also [162] for an early use of this method to compute tiwedsional invariant mani-
folds and Wechselberger [233] and Guckenheimer and HaR&jdgr an example involving
folded nodes.

When incorporated into a continuation framework, the swegpnethod can also be
used if the critical manifold is not known in closed form amhe tmesh of initial conditions
cannot be selected beforehand. Continuation methods [4®jde well-established algo-
rithms that augment equation solvers like Newton’s methal strategies for choosing new
starting points when solving under-determined systemgudons. More precisely, suppose
F :R™" — R™ is a smooth function given by equations ofn+n variables. The implicit
function theorem states that the zerostoform a smoothn-dimensional manifold\/ near
points where the matriO F' of partial derivatives has full rank.. Moreover, the theorem
gives a formula for the tangent spaceMdf Most continuation methods treat the case 1
where the set of solutions is a curve; see [101] for the @asel. In general, the methods
are based on a predictor-corrector procedure: given a paint, tangent (or higher-order)
information is used to choose a new seed for the solver to fir@hepoint on)M . The sweep-
ing method described above selects the continuation stefbsised on equal increments of
a specific coordinate or direction, but more sophisticateg size adaptations can be used
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as well. For examplgyseudo-arclengtisontinuation as implemented in AUTO [50] chooses
points based on their distances from each oth@&'ir".

We also used a sweeping method to compute the global unstabidold W*(p) in
Figure 11. The mesh of initial conditions was taken to liengl@ ray in the tangent space
of W*(p), with endpoints of the mesh at successive intersectionsti@ectory of the lin-
earized system with this ray. The sweeping method works ek, because the selected
orbit segments provide adequate “coveragelidf(p).

8.2. Continuation of orbit segments with boundary value solers. The core algo-
rithms of AUTO [50] are boundary value solvers and contimratmethods. The sweeping
method described in the previous section can also be impidén AUTO [50], so that
the initial value problems are solved using a collocatiorihod; see [49] for details. The
techniques described in this section impose boundary ttondion both end points of the
orbit segments, which makes the method more versatile atabkiin a wider context; see
also [131]. We describe here how to formulate two-point latzum value problems (BVP) in
order to compute slow manifolds and associated canardsorbit

We consider two-point boundary value problems of the form

= T
u(0) € I, (8.1)
>

whereg : R" x RP — R" is sufficiently smooth7" € R, A € R? are parameters andand
> are submanifolds dR™. The parametef’ rescales time so that the orbit segments always
correspond to trajectories in the time inter{@l1]. Hence, the boundary conditions at the
two end points always apply t@(0) andu(1). In order to have a well-posed problem with
isolated solutions, the number of boundary conditions khegual the number of equations
(n, becauséu) € R™) plus the number of free parameters (at most 1 for the parameter
A and the total integration tim&). We are interested in one-parameter families of solutions
of (8.1), which means that we allow one fewer boundary caoifor one additional free
parameter). Note thdt is typically unknown and we may vieW as the extra free parameter.
Let us first consider the computation of two-dimensionaiaating and repelling slow
manifoldsS? andS?. To simplify the explanation, we assume that we have a tbieensional
slow-fast system with two slow variables and a folded nodtethis context, the parameter
A remains fixed, and we obtain a one-parameter family of odgteents (with unkown to-
tal integration timed") by imposing a total of three boundary conditions. This nsetduat
the dimensions of, and X in (8.1) sum up ton = 3. Our approach is to choosk as a
curve (or straight line) on the critical manifold, which tes two boundary conditions, and
> as a surface (or plane), which requires one boundary condisuch that the associated
one-parameter family of orbit segments covers the desioeiibp of the slow manifold. For
example, in order foS¢ to come into the folded node region, we letbe a curve on the
attracting sheet of the critical manifold transverse to twv flow and> be a surface or-
thogonal to the fold curvé’ at the folded node. The same approach worksSforwhere we
chooseL on the repelling sheet of the critical manifold; note tidak 0 for such a family
of orbit segments. We remark that these choices can alsodoewith the sweeping method
and an initial value solver that detects a “stopping coaoditidefined by the level set of a
function. With the boundary value solvers, we can exchahgerdles of. and:, which
is more appropriate for finding canard orbits; see SectiBn Fhe slow manifolds can be
extended by choosing cross-sectiah®rthogonal toF’ at points that lie beyond the folded
node. Figures 6, 20 and 29 give examples of such visualirstiee also [40, 41, 43].
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Fic. 33. Computation of the slow manifolds?, and S7, of the Koper mode{4.1) with (e1,¢e2, A\, k) =
(0.1,1,7,-10). Panels (a) and (b) show the homotopy steps to constructfisétsegmentsai® (dark red) onSg,
(red) andu” (cyan) onS, (blue) that connect the sectidly, with curvesL® and L™ on the critical manifoldS
(grey), respectively. The red and blue families are gemeftaturing the second homotopy step, which starts from
solutions that have one of their end points on the fold curvef S. Panel (c) showss¢, and SZ, together with
three secondary canards, {2 and¢s. Panel (d) shows the intersection curvesSgf and S{ in X, that are used
to detect canard orbits.

As with all continuation, an important issue is to find a firsision. When continuing
solutions of a boundary value problem, explicit solutiorsyrbe known from which such a
first solution may be constructed; see [41] for an examplewé¥er, in general no explicit
solution is known and a first solution must be found in a défeérway. We use a homotopy
method to generate an initial orbit segment; the main idea ontinue intermediate orbit
segments via two auxiliary BVPs — the first to obtain an orbgraent from a point on the
fold curve F' to the section, and the second to move the end poink’adong the critical
manifold to a suitable distance frofi see [40] for details.

53



We now illustrate this method with the Koper model (4.1), ethwas also used for the
case study in Section 4. We use the paramdterss, A, k) = (0.1,1,7,—10); note that
A > 0 as in [122], which is symmetrically related to the case with= —7 considered in
Section 4. As shown in Section 4, there is a folded node inrttudel, which organizes the
SAOs in some of the observed MMOs; in original coordinatés dtt

24N 22 +4+k
pfn—(l, oot >—(1,0.9,0.8). (8.2)

We computeS¢, andS! as solutions to the BVPs given by (8.1), wheyés defined as the
right-hand side of (4.1). As boundary conditions, we usestiree sectiol for bothS¢, and
SZ, with respective lined, = L* andL = L" as follows

Yo = {(z,y,2) € R® | 2 = 0.8}, (8.3)
L= Sn{xz=-15}, (8.4)
L" .= Sn{z=-0.2}. (8.5)

Figure 33 shows the result of the computations. We find a fitsit eegment o2, using
two homotopy steps; this is illustrated in Figure 33(a). ri8tg from the trivial solution
u = {psm | 0 <t < 1}, with total integration time&” = 0, we continue the family of orbit
segments that solves (4.1) subjectifd ) € ¢, andu(0) € F. We stopped the computation,
detected by a user-defined function in 7?0, as soon as

u(0) € £% := {(z,y,2) € R® | z = —0.76}.

The orbit segment with its end point anin Figure 33(a) is this last computed solution of
the family. The second step of the homotopy moués) € S away fromF (approximately)
parallel toX, that is, we next continue the family of orbit segments tludtess (4.1) subject
tou(l) € Xg, andu(0) € L* = S N 3% The continuation stops whdlf is reached, which
is again detected by a user-defined function inTA. A selection of orbit segments in this
family are shown in Figure 33(a) (red curves); only the labttesegmenui® (dark red) lies on
S¢ to good approximation. A similar computation was done taoba first orbit segment
on 57, where we use the intermediate sectioh := {z = —0.87}; this is illustrated in
Figure 33(b), where the orbit segmarit (cyan) serves as a first solution 8t .

Once the first orbit segment§ andu” have been found we start the continuation of (8.1)
with (8.3) and (8.4) for the attracting slow manifokf and with (8.3) and (8.5) for the
repelling slow manifoldSZ . The result is presented in Figure 33(c), and the intersecti
curves ofSZ andS?, with X, are shown in Figure 33(d). The transverse intersectiontgoin
of S¢ N ¥, and S, N Xg, in panel (d) correspond to secondary canard orbits; thethre
dimensional view in panel (c) shows three of these, labgled, and&s. Precisely for the
purpose of locating and continuing canard orbits it is neagsto choose the common cross-
sectionXy, for the calculations of¢ andS? ; see also the next section.

8.3. Finding and following canard orbits. Maximal canards near a folded node are
transverse intersection curves of the two-dimensionad@tihg and repelling slow manifolds
S¢ andS?. We briefly discuss here how to detect the canard orbits ansksently continue
them in a system parameter; see also [40, 41, 43]. To refraseaximal canard we must
computeS¢ and.S? using a common cross-secti@hof the fold curve at or near the folded
node. The common cross-section allows us to obtain a repegm of the canard orbit as
the concatenation® of an orbit segmena® C S¢ with an orbit segment” C S7, where
u® andu” are chosen such that' N X = u” N . The concatenated orhit® located with
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FiG. 34. Continuation of secondary canards of the Koper mddel) with (e2, A\, k) = (1,7, —10) starting
frome; = 0.1. Panel (a) shows the canard orlgjj represented by the concatenatiafi of two orbit segmenta®
andu” that match up inZg,. Panel (b) shows the continuation of the canard orlgits{~ in €1; plotted as total
integration timeT" versuse;. Panel (c) shows a two-dimensional “waterfall diagram” dfet time profiles of the
fast variablex (subject to an offsed;) of computed orbit segments along the braggh The bold black curve in
panel (c) is the canard orb#, at the fold point of the (boldfaced) branch in panel (b).

this method can be continued in a system parameter witheutebd to recompute the slow
manifolds at each step. Recall that AUTO always scales bamynélue problems to the time
interval [0, 1], so we rescale time oa°® appropriately and s&t = T + 7" in (8.1). We can
then start the continuation (in a system parameter) sutgebe boundary conditions

u(0) € L, (8.6)
u’(l) e L, (8.7)

which determinex© as an isolated solution. In fact, such a continuation tyjyistarts already
provided thatu® N % ~ u” N X; any small gap ir% is forced to close by the first Newton
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step. These two boundary conditions (8.6) and (8.7) foreeothit segmenti® to stay very
close to the attracting sheet of the critical maniféldintil near the fold curve”, and then
stay close to the repelling sheet®up toL".

Figure 34 illustrates canard continuation with the Koperdeiq4.1), where we used
¢, as the second free parameter (together Wijrand kept(es, A\, k) = (1,7, —10) fixed.
Figure 34(a) shows the two orbit segmentsandu” with (almost) equal end points in the
sectionX = Xy, ; they have been detected as a good approximation of the rabg@oondary
canard orbitt4, which is then represented by the concatenated arbitWe continued:,,
along with six other maximal secondary canards, for indngaand decreasing; ; see also
Figure 33. Figure 34(b) shows these seven branches, labgelég here, the vertical axis
shows the total integration tiniE because it clearly distinguishes the branches. When
&7 are continued in the direction of increasing a fold ine; is detected for each branch;
we have already seen this in Section 5 and it has also beernvellse other systems [43].
Figure 34(c) is a “waterfall diagram” that shows how the mae&di secondary canard orlgit
evolves along the branch asis varied; specifically, the time profile of the fast variablef
consecutively computed orbit segments along the brapele plotted with a suitable off-set
0;. The orbit segment that corresponds to the folg,0E highlighted in bold black. Observe
that the orbit segments to the left of the fold have four SA@sereas past the fold there are
only three SAOs followed by a fast segment. Hence the candnitsast the fold are no
longer maximal canards; see also Section 5.

9. Discussion. We described several mechanisms in slow-fast systems thduge
mixed-mode oscillations, namely the twisting of slow irgat manifolds near a folded node,
oscillations that follow the two-dimensional unstable iif@ld of a saddle-focus equilibrium
near a singular Hopf bifurcation, and the tourbillion medken of a dynamic Hopf bifur-
cation. Geometric singular perturbation theory providesd to identify the geometry as-
sociated with each mechanism, to quantify the MMO signatuaad to describe associated
bifurcations. Analysis of the folded node case is more cetepthan the other cases. Re-
cent work on singular Hopf bifurcation [85] and the trarmitifrom singular Hopf to folded
nodes [143] provides substantial detail on the second basejuch remains to be discovered
about the unfolding of a singular Hopf bifurcation that ikex@ant to MMOs. Historically, the
dynamic Hopf bifurcation was discovered first, and detadadlysis exists for the case of a
delayed Hopf bifurcation of the layer equations [168]. Tibge, these mechanisms constitute
a partial framework for classifying MMOs in multiple-tinssale systems that can be further
extended. Perhaps the most surprising aspect of the theohawe described is that oscilla-
tions can appear from the interaction of fast and slow tinaesceven when neither of these
time scales individually displays oscillations.

We have used four case studies to illustrate theoreticateqs and they serve as a
testbed for the development of numerical methods. The MMQRe Koper model and the
three-dimensional reduction of the Hodgkin—Huxley equaihave SAOs that occur on in-
termediate time scales due to folded nodes and singular bifyp€ations. In the folded-node
mechanism, three parameters play key roles in determihingéometry of the small oscilla-
tions: the ratie of time scales, the eigenvalue ratiof the folded node in the desingularized
reduced system, and the distardcef global return trajectories from certain invariant man-
ifolds. Intersections of invariant manifolds are preraifei to global returns that produce
MMOs in these examples, and tangencies between these hdarsfinstitutes a new type of
bifurcation that is found on the boundaries of parameteioregyielding MMOs. We found
fast oscillations of the layer equations in the Olsen andy@lter—Noyes—Bar-Eli models of
chemical reactions. Both models exhibit MMOs due to the dyicdHopf mechanism. These
two case studies also illustrate how the theory appliesghdr dimensions and how numer-
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System / Reaction References
Belousov-Zhabotinskii (BZ) reaction
- Virginia [83, 103, 104, 105, 202]
- Texas [156, 157, 158, 194, 195]
- Bordeaux [8, 9, 183, 193, 228]
- Other groups | [107, 155, 184, 185, 206]
Briggs-Rauscher (BR) reaction [28, 73, 171, 231]
peroxidase-oxidase (PO) reaction | [76, 97, 98, 99, 100, 106, 173, 207]
HPTCu reaction [15, 137, 175, 176, 227]
Bray-Liebhafsky (BL) reaction [73, 149, 230]
copper and phosphoric acid [6, 200]
indium/thiocyanate (IT) reaction [125, 126]
BSFA-system [128]
p-CulnSg/H,0,-system [167, 182]
spin-wave experiment [5]
rhythm neural network (PreBC) [39]
stellate cells [45, 46, 61]
pituitary cells [225, 229]
combustion oscillations [82]
dusty plasmas [160]
semiconductor lasers [7, 81, 226]
CO oxidation [57, 58, 136]
TABLE 9.1

References for experimental investigations of MMOs.

ical tools can be extended to investigate and identify thehaeisms for generating MMOs
in higher-dimensional systems.

One of our goals for this paper is to facilitate fitting dynaaiimodels to data. In the
case of MMOs, this task has been less successful than witl othar nonlinear dynamical
phenomena. On the one hand, MMOs are a complex phenomersbionahe other hand,
numerical studies of models have yielded puzzling and samestparadoxical results. The
theory that has been developed thus far deals best withnestaunces where the SAOs have
amplitudes that are far too small to be observed even in rioaedesimulations, but model
studies frequently show MMOs with SAOs that are readilyblasi Thus, numerical meth-
ods that identify the geometric objects highlighted by theotry are essential for bringing
theory, models and empirical data together. We have redeaeent advances in computing
two-dimensional invariant manifolds and their intersecs that are especially important in
three-dimensional models. Extension of these methodsgteehidimensions is one of the
challenges for further advances in this subject.

We conclude this survey with a brief review of the MMO litara, and a short discussion
of other mechanisms for MMOs in ODEs and beyond.

9.1. MMO literature review. This section provides an overview, in the form of three
tables, of references where examples of MMOs have beerestedperimentally or in model
systems. We do not claim that this overview is complete;aatthese tables are intended as
an entry point into the extensive literature on the subjéaible 9.1 lists experimental work on
MMOs. The majority of these experiments have been carri¢doochemical reactions. As
suggested in [8], we subdivided the large number of refa®goo the Belousov-Zhabotinskii
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| Mathematical Model | Dimension | References
Belousov-Zhabotinskii (BZ) reaction
- Field—Koros—Noyes (FKN) 11 [70]
- FKN-extended (GTF-model) 26 [96]
- Showalter-Noyes—Bar-Eli (SNB) 7 [16, 36, 154, 188, 205]

- (Minimal) Oregonator 3 [71, 179, 203, 218, 220]
- Model K (“Kyoto”) 3 [216, 221]
- [Uator (“Indiana University”) 4 [201, 221]
- Geiseler—BlIner oregonator 3 [77,221]
- FKN-modified 7 [186]
- Zhabotinskii-Korzuhkin 3 [240]
BR-reaction
- De Kepper, Epstein; Furrow, Noyes 11 [117,170,171, 219, 231]
- Kim, Lee, Shin 8 [120, 121]
- Vukojevi€, Sgrensen, Hynne 13 [231]
PO-reaction
- Olsen / DOP models 4 [4,37, 42,150, 152, 153, 173, 204
- BFSO model, Urbanalator 10 [29, 30, 99, 151, 174, 198]
- Yokota-Yamazaki (YY) model 8 [65, 199, 238]
- FAB model 7 [64, 199]
- Model A, Model C 9,10 [2, 3]
- Model C-HSR 12 [106]
Plenge model (hydrogen oxidation) 4 [11]
IT-reaction 3 [123, 124, 125, 127]
BSFA-system 4 [128]
p-CulnSg/H;0,-system 2,4 [167, 182]
self-replicating dimer 3 [178, 181]
autocatalytic SU3 unit 3 [217]
Hodgkin—Huxley (HH) 4 [52, 196, 197]
self-coupled HH 3 [53]
CO oxidation 3 [58, 136]
self-coupled FitzHugh-Nagumo (FHN) 3 [40, 233]
FHN, traveling frame 3 [89, 91]
combustion oscillations 3 [75, 82]
stellate cells
- Acker, Kopell, White (AKW) 7 [1,191, 234]
- reduction of AKW 3 [109, 192, 234]
pituitary cells 3,4 [169, 209, 213, 229]
dopamine neurons 4 [139, 159]
autocatalator 3 [92, 161, 162, 180]
LP neuron 14 [87]
Erisir model 5 [62, 63]
semiconductor lasers 3 [7,51, 133, 135, 177]

TABLE 9.2
References for realistic mathematical models that exMibitOs.

(BZ) reaction into research groups. Table 9.2 lists refe@srto mathematical models that
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Abstract Model Dimension | References
Boissonade and De Kepper; Koper| 2,3 [26, 116, 122]
Boissonade and De Kepper; Strizhak 2, 3 [26, 80, 119]
Kawczynski and Strizhak 3 [113, 114, 184, 185]
folded node toy model 3 [31]
3-scale: Krupa, Popovic, Kopell 3 [138, 139]
Hopf-hysteresis normal form 3 [16, 186]
4
3
4

two coupled oscillators [210]
Rossler; Gaspard and Nicolis [16, 74]
Barkley [16]

TABLE 9.3
References for abstract models exhibiting MMOs.

were derived or proposed for a particular application teatdres MMOSs; several papers
from Table 9.1 also contain a theoretical model and are, dyeligted again in Table 9.2.
Finally, Table 9.3 lists several abstract models that asigded to be among the simplest
systems that yield MMOs with specified characteristicsfits¢ five rows of the table repre-
sent frameworks of folded nodes, folded saddle-nodes aglisir Hopf bifurcation that are
presented in this paper.

Chemical reactions feature strongly in Tables 9.1-9.3.rd have been substantial ef-
forts to develop models, from the law of mass-action, thataduce experimental observa-
tions. We remark that detailed models that attempt to cagphe full chemistry of a reaction
are typically very stiff and contain large numbers of parterse as a result, it is often diffi-
cult to fit the models to experimental data. We hope that teerthand numerical methods
reviewed in this paper lead to better fits of models to datde Mwat recent interest in MMOs
in neuroscience is also reflected in the three tables.

9.2. Other MMO mechanisms in ODEs. Historically, MMOs have also been studied
in the context of bifurcations of systems with a single tirsals. More specifically, homo-
clinic or heteroclinic cycles involving one or several inaat objects provide a mechanism
for MMOs that does not require an explicit slow-fast struetuThe best-known case is that
of a homoclinic orbit to a saddle-focusR?. A theorem by Shihikov [88, 147, 204] proves
that (depending on a condition on the eigenvalues of thelsdddus) there exist one or
an infinite number of periodic orbits in a tubular neighbarti@f the homoclinic orbit; see
also [79]. Each such periodic orbit near this global bifticrainvolves one or several large
excursions along the homoclinic orbit, as well as smalllzmns when the trajectory spi-
rals away from, or back toward the saddle-focus. This typesaillations near SHilikov
bifurcations can be found readily in laser systems: one weraé large pulses of the laser
power are followed by small damped oscillations near thalleafbcus; see, for example,
[7,51, 81, 133, 135, 177, 226, 236]. The small oscillatioresat a characteristic frequency
and are due to a periodic exchange of energy between theabieid and the carrier reservoir
(electron-hole pairs in the case of a semiconductor lasémilarly, more complicated hete-
roclinic cycles may give rise to large excursions followgdsinall oscillations. A concrete
example is a heteroclinic cycle between a saddle equitiband a saddle periodic orbit, as
can be found, for example, near a saddle-node Hopf bifuncatith global reinjection. Near
this global bifurcation one can find large attracting peidaitbits that visit a neighborhood of
the equilibrium and also have an arbitrary number of smadlgws around the saddle-periodic
orbit; see [129, 134].

While such global bifurcations are generic and require ncigpproperties of the sys-
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FIG. 35. An MMO periodic orbitl" in the Gaspard-Nicolis-Bssler model [74]. Panel (a) shovisrelative to
the S-shaped critical manifold; this illustrates that th&C® are taking place entirely on the slow manifold. Panel (b)
shows the time series of thecoordinate ofl".

tem, they often appear in slow-fast systems and proving théstence is greatly simplified
in this context [163, 211]. A notable example was introdulbgdRossler [189, 190] and later
illustrated by a model due to Gaspard and Nicolis [74]. Fegdf(a) shows the geometry of
this model; it has a classical S-shaped critical manifoldith two fold lines and there exists
a stable MMO periodic orbif’ that contains two fast segments. Figure 35(b) shows the cor-
responding time series of one of the coordinateE ahd illustrates thal' has signaturé?.
The LAOs ofT" are formed by the usual relaxation-oscillation mechanibhe phase portrait

in Figure 35(a) is near (the simple case of) a ‘Biibv bifurcation; the SAOs occur because,
after one fast transitior; is in the vicinity of a saddle-focus equilibrium, which is ansta-
ble focus of the slow flow. Note that the time series also sh@at the SAOs happen on the
slow time scale. Barkley [16] observed that this mechanisesdot account for MMOs in
the BZ reaction because there the SAOs also have a fast cemipdviorever, this particular
mechanism does not seem to occur in other models as comnwotiig alow-fast mechanisms
presented in Section 3. Intuitively this is expected siteeglobal-return mechanism has to
be special (namely, near a Shikkov bifurcation) to provide returns to a small neighbasto

of a slow-flow focus. Nevertheless, th&$sler mechanism is of interest historically as one
of the first proposed geometric mechanisms for MMOs. It is alsother nice example that
illustrates the geometric approach of exploiting the sfast-nature of a system to understand
MMOs.

Subcritical Hopf bifurcation in a system with a single tintake has also been observed
to give rise to MMOs. The appearance of these MMOs resemhlesetassociated with
Shilnikov bifurcation. Guckenheimer and Willms [93] analyzéthhenomenon, which we
briefly sketch here. Consider a three-dimensional systewhich an equilibriumg makes
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the transition from a sink to a saddle-focus via a subctitit@pf bifurcation. Whery is a
saddle-focus, it has a real eigenvalue of magnitQdé) and a pair of complex eigenvalues
whose real parts are small and positive. Trajectories thvaecclose to the stable manifold of
q will flow close to¢ and then slowly spiral away with oscillations of increasimggnitude,
similar to those observed near a singular Hopf bifurcatsm® Figure 21. MMOs will occur

if these spiraling trajectories make a global return to theénity of ¢. Global returns for
portions of the unstable manifold gfare robust and may exist already at the Hopf bifurca-
tion where the center manifold gfis weakly unstable. In this case, the returns are likely
to come close enough tpthat they will give rise to long epochs of small, slowly grogi
oscillations. See Guckenheimer and Willms [93] for a thdléaensional example and Guck-
enheimer et al. [87] for a high-dimensional example ocagrin a neural model. We remark
that, although this mechanism for creating MMOs applies $tngle-time system, the Hopf
bifurcation naturally introduces a slow time scale in thetegn associated with the real parts
of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs gttkby a local mech-
anism near a special point of the limiting system. HowevaSand associated MMOs may
also arise in other ways in slow-fast systems. An exampl&isfare MMOs with two well-
defined separate oscillations that occur when the layettieqsehave two families of periodic
orbits, one large and one small, and fast jumps between tfi@im.scenario is analogous to
the phenomenon of bursting, which is common in neural systdm bursting, oscillations
alternate with quiescent epochs (associated with a sldnadiohg a stable equilibrium of the
layer equations) instead of there being oscillations dedéint amplitudes. Since the sem-
inal work of Rinzel [187], bursting has been viewed as a mléttime-scale phenomenon.
In this context, bursts occur when the layer equations of dahbave both equilibria and
limit-cycle attractors and the full system makes fast jurbptveen these in both directions.
Izhikevich [108] compiled an extensive classification ofdiing patterns based upon the bi-
furcations of the layer equations that initiate and terr@rthe oscillations in a burst. A
similar table could be constructed for MMOs, but it would lverelarger. Golubitsky, Josi¢
and Kaper [78] use a different classification of burstinggras based on singularity theory,
which is more in the spirit of this survey. Section 6 givesiaftaste of the analysis of global
mechanisms for transitions between large and small osoillsiin MMOs.

9.3. MMOs beyond ODEs. This survey only considers MMOs that arise in slow-fast
ODEs, hut they have also been found in dynamical systemsatkeatlescribed by stochas-
tic differential equations (SDESs), delay differential atjons (DDEs) and partial differential
equations (PDEs). The analysis of MMOs in these more ingbbedtings is much less devel-
oped than that for ODEs. To give a flavor, we now describe lraefew recent examples in
which a slow-fast structure is an important aspect of the M@t have been identified.

9.3.1. Stochastic MMOs. Muratov and Vanden-Eijnden [165] study the Van der Pol
oscillator with small (additive) noise; they useas the bifurcation parameter and consider
the casé) < ¢ <« 1. Their analysis shows an intricate interplay between thsenand the
singular perturbation parameterand how this depends on For example, it can be shown
that even if the deterministic limit without noise has jusstable fixed point for suitable
A, the stochastic differential equation (SDE) can exhibli&xation-type oscillations; also
MMOs that are composed of “small canard orbits” and relaxatiAOs can occur. Borowski
and Kuske [145] consider a similar stochastic slow-fasegiqn of FitzHugh—Nagumo type
and find MMOs due to noise as well; see also [146]. Closelytedlas the work by Berglund
and Gentz [24, 25] who study spike generation in slow-fastalanodels with noise in the
framework of SDEs. The common ingredient in these examplegditability: while small
noise only leads to small irregular oscillations, a suffithelarge noise perturbation can kick
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the system beyond a threshold that results in a large excur3ihere is a noise level when
the system is most coherent or regular and, hence, showslefetled but irregular MMOs.
Excitability as a mechanism to generate large pulses asthdt of external and/or internal
noise has also been observed and studied in several lasemsy{&4, 133].

Another possible mechanism for noise-induced MMOs wassitigated by Yu et al. [239],
who consider a system of coupled-oscillator SDEs. If themfeinistic limitis at least bistable
then noise can provide a mechanism for sample paths to atéebetween the basins of at-
traction of deterministically stable invariant sets. Theest way to visualize this idea is to
consider two stable limit cycles for an ODE, one with a smad ¢he other with a large am-
plitude. If the basins of attraction are suitably locatenisa can induce repeated transitions
between tubular neighborhoods of each cycle. Hence, adlys@nple path will then be an
irregular MMO.

9.3.2. MMOs in delay differential equations. One can ask the question what happens
when one adds delay terms to a slow-fast system. Sriram apih&ban [206] consider
the Belousov-Zhabotinskii reaction with delay in an expent. They compare the results
with a version of the classical three-dimensional Oregamatodel [71, 203] with delay and
claim that the delay induces MMOs [206]. This prompts thestjoe whether DDEs have
slow-fast phenomena, such as canards, similar to their QidiBterparts. In principle, this
should be expected at least for the case of a finite number ed filelays, for which the
DDE does not feature a continuous spectrum [94]. Indeed #iymanswer was recently
obtained by Campbell, Stone and Erneux [32] for a two-diritered DDE model of high-
speed machining. In their system a small delay induces ipttion from a degenerate Hopf
bifurcation, which results in a canard explosion as dised$s Section 2.2; see also [34] for
details of the underlying theory for slow-fast DDEs with dhazlay.

9.3.3. MMOs in partial differential equations. Given atime-dependent PDE on a do-
main inR"™, one can look for MMOs in space, time or a mixture of space ame.tNagumo’s
equation [166], which models the evolution of an activatar, t) and a slow inhibitow(x, t),
is an example that has been studied extensively as an iddatindel for propagation of ac-
tion potentials. Traveling-wave profiles are found via theazv(z,t) = v(x + ot) = v(7)
andw(z,t) = w(x + ot) = w(7) as homoclinic solutions of a three-dimensional ODE with
two fast variables and one slow variable [90]; heres the wave speed. It has been shown
that MMOs exist as solutions of this reduced ODE [91]. Moraagally, work on evolution
equations given by PDEs suggests that oscillatory patigithsalternating amplitudes [35]
and slow-fast structures [17] exist in many common modeé&ndd, the study of this type of
MMOs for PDEs will benefit from multiple-time-scale methods
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